• 제목/요약/키워드: High-speed dry cutting

검색결과 25건 처리시간 0.024초

볼 엔드밀 가공환경조건이 고경도 강재의 고속절삭특성에 미치는 영향 (The Effect of Ball End Mill Cutting Environments on High Speed Machinability of Hardened Tool Steel)

  • 이영주;원시태;허장회;박동순;김은수;김기표
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.238-244
    • /
    • 2004
  • This research conducted milling tests to study effects of cutting environment conditions of ball end milts on the characteristics of high speed milling cutting process. KP4 steels and STD11 heat treated steels were used as the workpiece and WC-Co ball end mill tools with TiAIN coated were utilized in the cutting tests. Dry cutting without coolant and semidry cutting using botanical oil coolant by the MQL(Minimum Quantity Lubricant) device were conducted. Cutting forces, tool wear and surface roughness were measured in the cutting tests. Results showed that MQL spray cutting of KP4 and hardened STD11 specimens produced better surface quality and wear performance than dry cutting did.

  • PDF

볼엔드밀을 이용한 고속가공에서 가공환경 변화에 따른 열특성 평가 (Evaluation of thermal characteristics by cutting environments in high speed ball end-milling)

  • 이채문
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.34-38
    • /
    • 2000
  • The trend of cutting process today goes toward higher precision and higher efficiency. Many thermal/frictional troubles occur in high-speed machining of die and mold steels.In this paper, the thermal characteristics are evaluated in high sped ball end-milling of hardened steel(HRc42). Experimental work is performed on the effect of cutting environments on tool life and cutting temperature. Cutting environments involve dry, wet(20bar), compressed chilly air at -9$^{\circ}C$, compressed chilly air at -35$^{\circ}C$. The measuring technique of cutting temperature using implanted thermocouple is used. The cutting temperature is about 79$0^{\circ}C$, 35$0^{\circ}C$ and 54$0^{\circ}C$ in dry, wet and compressed chilly air at +9$^{\circ}C$, respectively. The tool life for compressed chilly air at -9$^{\circ}C$ is longer than all other cutting environments in experiment.

  • PDF

볼엔드밀을 이용한 고속가공에서 가공경로와 가공환경에 따른 가공성 평가 (Evaluation of Machinability by various cutting conditions in high machining using ball nose-end mills -Effects of cutting orientation and cutting environments-)

  • 이채문;김석원;이득우
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.297-301
    • /
    • 2002
  • High-speed machining generates concenter thermal/frictional damage at the cutting ed rapidly decreases the tool life. This paper I at determining the effect of cutter orienter the cutting environment on tool life, tool mechanism when down milling. In this paper, experiments were carried out in various tool and cutting environments, such as dry, wet compressed chilled air, tool life were measu evaluate machinability in high-speed milli difficult-to-cut material and die steel, Tool measured in horizontal upwards, horiz downwards, vertical upwards and vert downwards. In addition, tool life was measur dry, wet and compressed chilled air. For this a compressed chi1led-air system was manufact The results show that a horizontal cutter ori provided a longer tool life than a vertical orientation. With respect to the cutting envi compressed chilled air increased tool life. H the wet condition decreased tool life due thermal shock caused by excessive cooling high-speed mill ins and the compressed chilled had little effect.

  • PDF

High Speed Ball End Milling for Difficult-to-Cut Materials

  • Lee, Deug-Woo
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.19-27
    • /
    • 2000
  • High speed machining (HSM), specifically end milling and ball end cutting, is attracting interest in the die/mold or aerospace industries for the machining of complex 3D surfaces. HSM of difficult-to-cut materials such as die/mold steels, titanium alloys or nickel based superalloys generates the concentrated thermal/frictional damage at the cutting edge of the tool and rapidly decreases the tool life. Following a brief introduction on HSM and reated aerospace or die/mold work, the paper reviews published data on the effect of cutter/workpiece orientation and cutting environments on tool performance. First, experimental work is detailed on the effect of cutter orientation on tool life, cutting forces, chip formation, specific force and workpiece surface roughness. Cutting was performed using 8 mm diameter PVD coated solid carbide cutters with the workpiece mounted at an angle of 45 degree from the cutter axis. A horizontal downwards cutting orientation proveded the best tool life with cut lengths ∼50% longer than for all other directions (horizontal upwards, vertical downwards, vertical upwards). Second, the cutting environments were investigated for dry, flood coolant, and compressed chilly air coolant cutting. The experiments were performed for various hardened materials and various coated tools. The results show that the cutting environment using compressed cilly air coolant provided better tool life than the flood coolant or the dry.

  • PDF

난삭성 재료의 가공환경변화에 따른 고속가공 특성 평가(압축공기냉각에 의한 공구수명 평가) (Evaluation of Machinability by Cutting Environments in High-Speed Machining of Difficult-to-cut Materials(Test for Tool Life Using Compressed Chilly Air Cooling))

  • 김석원;안철수;이득우
    • 한국생산제조학회지
    • /
    • 제9권6호
    • /
    • pp.158-163
    • /
    • 2000
  • High speed machining of difficult-to-cut materials generates the concentrated thermal/frictional damage at the cutting edge of the tool and rapidly decreases the tool life. In this paper, the cutting environments, such as dry, fluid coolant, and compressed chilly air coolant, were investigated to improve the tool life. For this study, the compressed chilly air system was manufactured. The experiments were performed for various difficult-to-cut materials and various coated tools. The effectiveness of the developed methods on the basis of tool life was estimated. The results show that the cutting environment using compressed chilly air coolant provided better tool life than using the fluid coolant or using the dry.

  • PDF

미세홈 고속가공시 절삭유제 공급방식에 따른 가공성 평가 (Cutting Characteristics of Micro grooving by Cutting Environments in High Speed Machining using Ball End Mill)

  • 배정철;정연행;강명창;이득우;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.172-175
    • /
    • 2002
  • High speed machining is one of the most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when machining of micro groove in high speed machining a severely thermal damage was generated on workpiece and cutting tool. Generally, the cutting fluid is used to improve penetration. lubrication. and cooling effect. In order to rise the performance of lubrication. it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive. Therefore, the compressed chilly air with oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HrC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effect of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool lift of carbide tool coated TiAlN with compressed chilly air mist cooling was much longer than that of the dry and flood coolant when cutting the material.

  • PDF

초경 볼 엔드밀의 TiAlN 코팅 처리조건이 건식가공환경에서 고경도 강재의 절삭 특성에 미치는 영향 (The Effect of TiAlN coated Ball End Mill on Cutting characteristic of High Hardness Steels in Dry Condition)

  • 박동순;원시태;이영주;허장회
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.344-349
    • /
    • 2005
  • This paper is studied on the effect of TiAlN coated ball end mill on cutting characteristic of high hardness steels in dry cutting condition without coolant. KP4 steels[HRC32] and STD11[HRC60] heat treated steels wert: used as the workpiece and WC-Co ball end mill and single and multi layer TiAlN coated ball end mill were utilized. Results showed that TiAlN coated ball end mill were increased the cutting length than WC-Co ball end mill in the cutting speed$[245\~320m/min]$ about $2\~5$ times for KP4 steels and about $2.7\~4.3$ times for STD11 heat treated steels. The multi layer TiAlN coated ball end mill is good about $1.2\~1.7$ times for KP4 steels and STD11 steels than single layer coated.

  • PDF

소구경 미세홈 고속가공시 가공환경변화에 따른 가공성 평가 (Evaluation of Machinability of Micro groove by Cutting Environments in High Speed Machining using Ball End Mill)

  • 정연행;이태문;강명창;이득우;김정석
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.32-37
    • /
    • 2002
  • High speed machining is one of most effective technologies to improve productivity. It can give great advantage for manufacture of die and Moulds. However, when the high speed machining of materials, especially in machining of micro groove, a severely thermal demage was generated on workpiece and tool. Generally, the cutting fluid is used to improve penetration, lubrication, and cooling effect. In order to rise the performance of lubrication, it contains extreme pressure agents (Cl, S, P). But the environment of work room go bad by those additive Therefore, the compressed chilly air with Oil mist system was developed to replace the conventional cutting fluid system. This paper carried out the tests to evaluate the machinability by the cutting environment in high speed micro groove machining of NAK80 (HRC40). Compressed chilly air with oil mist was ejected on the contact area between cutting edge and workpiece. The effectiveness of this developed compressed chilly air with oil mist system was evaluated in terms of tool life. The results showed that the tool life of carbide tool coated TiAIN with compressed chilly air mist cooling was much longer than with dry and flood coolant when cutting the material.

  • PDF

알루미나 세라믹 가소결재의 피삭성 -다이아몬드 및 CBN공구의 절삭 성능- (Machinability of Pre-sintered Alumina Ceramics)

  • 김성청
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.41-46
    • /
    • 1996
  • In this study, unsintered and pre-sintered low purity alumina ceramics were machined with various tools to clarify the machinability, optimum tool materials and optimum cutting conditions. The main conclusions obtained were as follows. (1)In the case of dry cutting, the sintered diamond and natural diamond tools exhibit better performance in machining of the ceramic pre-sintered at lower temperature, and the tool lives of both tools in machining the ceramics pre-sintered at high temperature becomes extremely short. (2)The performance of CBN tool becomes better in dry machining of the ceramics pre-sintered at higher temperature. (3)When the pre-sintered ceramics were wet machined with sintered diamond, the tool life becomes considerably long, and higher cutting speed can be used than in the case of the CBN and ceramic tools, the tool lives becomes shorter at wet cutting than at dry cutting, especially exhibiting extremely short tool life in wet cutting with ceramic tool.

  • PDF

압축냉각공기를 이용한 공구수명 향상에 관한 연구 (The study on improving tool life using compressed chilly air)

  • 김찬우;이채문;이득우;김정석;정우섭
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.510-515
    • /
    • 2003
  • High-speed machining generates concentrated Thermal/fractional damage at the cutting edge and rapidly decreases the tool life. This paper is aimed at improving the tool life using compressed chilly air. In this paper, the experiments were carried out in various cutting environments, such as dry, wet and compressed chilly air. Tool life were measured to evaluate machinability in high-speed milling of various materials. With respect to the cutting environment, compressed chilly air increased tool life. However, the wet condition decreased tool life due to the thermal shock caused by excessive cooling.

  • PDF