• Title/Summary/Keyword: High-speed Hydraulic Actuator

Search Result 20, Processing Time 0.03 seconds

Design of High Speed Solenoid Actuator for Hydraulic Servo Valve Operation

  • Sung, Baek-Ju;Kim, Do-Sik
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.239-245
    • /
    • 2013
  • Modern electric controlled valves are demanded that its solenoid actuator should be smaller size, lighter weight, lower consumption power, and higher response time. For achieving these purposes, the major design factors of solenoid actuator such as magnetic flux density, coil turn numbers, plunger size, bobbin dimension, and etc. are must be optimized. In this study, for optimal design of high speed solenoid actuator for hydraulic servo valve operation, we draw up governing equations which are composed by combination of electromagnetic theories and empirical knowledge, and deduct the values of major design factors by use of them. For more increase the operating speed, voice coil are used as main armature in manufacturing of prototype actuator. And, we have proven the propriety of the governing equations and speed increasing method by experiments using the hydraulic valve assembly adopted the prototype of solenoid actuator.

A study on Energy Saving of the Excavator using Electro-Hydraulic Actuator (전기-유압 액추에이터를 이용한 굴삭기 에너지 절감에 관한 기초 연구)

  • Yoon, Hong-Soo;Ahan, Kyung-Kwan;Lee, Byung-Lyong;Kang, Jong-Min;Kim, Jae-Hong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.801-805
    • /
    • 2008
  • Today, hydraulic systems play an important role in modern industry for the reasons that hydraulic actuator systems take many advantages over other technologies with high durability and the ability to produce large forces at high speeds. In recent years, electro-hydraulic actuator systems, which combine electric and hydraulic technology into a compact unit, have been adapted to a wide variety of force, speed and torque requirements. Moreover these systems resolve energy consumption and noise problems characteristic existed in the conventional hydraulic systems. Therefore, these systems have a wide range application fields especially in an excavator. So the purpose of this paper is to demonstrate efficiency of the energy saving and present some control algorithms which apply to electro-hydraulic actuator system in the bucket of the excavator. Experiments are carried out to verify the effectiveness of the proposed system with various external loads as in real working conditions.

  • PDF

Pressure Control of Hydraulic Cylinder using high Speed On-Off Solenoid Valve (고속 온-오프 전자 밸브를 사용한 유압 실린더의 압력 제어)

  • 김상수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.69-78
    • /
    • 1999
  • In this study a new pattern of pressure control of hydraulic cylinder using high speed On-Off solenoid valve in the electro-hydraulic system has been suggested. The control valve is 3-way high speed On-Off solenoid valve which is operated by PWM(Pulse Width Modulation)control signal. The high speed On-Off solenoid valve has a tendency to induce severe pressure fluctuation in the hydraulic actuator so it has not been used for the purpose of closed loop control with direct pres-sure feedback. In this study closed loop control with direct pressure feedback is enabled by using a digital filter which has linear minimum mean square filter algorithm. Through some experiments it is confirmed that stable pressure control can be realized by the proposed control technique.

  • PDF

Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle (철도차량 승차감 향상을 위한 반능동/능동 진동제어)

  • You, Wonhee;Shin, Yujeong;Hur, Hyunmoo;Park, Junhyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

Position Control of a Hydraulic Cylinder by a Differential PWM Method (차동PWM방식에 의한 유압실린더의 위치제어)

  • 권기수;이창돈;이진걸
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.54-69
    • /
    • 1991
  • This study deals with the position control of a hydraulic cylinder system operated by two port 3-way high speed solenoid valve in Pulse-Width-Modulation mode, instead of using conventional electro-hydraulic servovalve. Due to the complexity and the relatively poor reliability of the servovalve, an actuator using simpler and more study high speed solenoid valve will be presented. The high speed solenoid valve acts as converters of electronic pulse signal to hydraulic ones. It has been pointed out that there are practical problems to be solved in the PWM system, that is (1) accuracy of positioning control becomes considerably insufficient because the system is affected by on/off action of the solenoid valves, and (2) serious nonlinerality appears in the valve characteristics as a result of the switching behavior of the valves. As a method to overcome these defects, the differential PWM driving method of a hydraulic cylinder that improved the steady-state-error, flow rate nonlinearity in simple PWM, and the hydraulic hunting of dead time compensated-PWM driving is proposed in this study.

  • PDF

A study on the design of a hydraulic actuator for high-speed underwater vehicle (고속 수중운동체의 유압식 구동장치 설계 연구)

  • 곽동훈;양승윤;이동권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.839-844
    • /
    • 1992
  • There are many specific requirements in the actuation, system for high speed underwater vehicle, such as size, weights, power etc.. In this paper, a high performance compact hydraulic actuation system to satisfy such requirements was designed. The controller of the system was designed using both the conventional PID and VSC which were known to have reliability, robustness respectively. The performance analysis was done for the designed actuation system through computer simulation.

  • PDF

Force Control of Hybrid Actuator Using Learning Vector Quantization Neural Network

  • Aan Kyoung-Kwan;Chau Nguyen Huynh Thai
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.447-454
    • /
    • 2006
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

Force Control of Hybrid Actuator using Learning Vector Quantization Neural Network

  • Ahn, Kyoung-Kwan;Thai Chau, Nguyen Huynh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.290-295
    • /
    • 2005
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

  • PDF

Study on Injection Response of Servo-Hydraulic Injector with Different Actuation Method (구동방식이 다른 서보유압형 인젝터의 분사응답성 연구)

  • Kwon, J.W.;Jeong, M.C.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2013
  • In this paper, high-pressure injection characteristic of servo hydraulic injector as the key component of diesel CRDi system, which is driven by solenoid and piezo-actuator were examined by experimental analysis. High-pressure injection characteristic of standard diesel fuel injected at high pressure up to 160 MPa was investigated at high-pressure chamber by using a high-speed camera for spray visualization and quantitative analysis. By this study, we found that the piezo-driven injector has better performances in controlling the fuel injection with the high pressure, including fuel quantity, spray penetration length and spray velocity, than that of a solenoid-driven injector. In particular, the needle response time for start of injection in piezo-driven injector was faster of about $125{\mu}s$ than that of solenoid-driven injector. Consequently, it is known that the piezo-driven injector has more degrees of freedom in controlling the fuel injection with the high pressure than solenoid-driven injector.

A Study on the Reliability Improvement of the Turbine Control Valve System in Nuclear and Thermal Power Plants (원자력/화력발전소의 터빈제어밸브시스템의 신뢰성 향상에 관한 연구)

  • Yang, Jong Dae;Yang, Seok Jo;Lee, Yong Bum
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.93-100
    • /
    • 2019
  • Nuclear and thermal power plants must provide the turbines with an appropriate degree of high temperature and high pressure steam, to produce the optimum electricity. Additionally, in the event of system and power system failure during electrical production, the steam is immediately disabled, to protect the turbines and generators rotating at high speed. The plant thus uses a special steam control valve system for turbine control, which is opened by force of the hydraulic servo actuator and closed by a large steel spring force. In this study, the causes of failure of the turbine control valve system, a key device of the power plants, were analyzed, and the causes of failure were improved relative to reliability of the equipment.