• Title/Summary/Keyword: High-spatial-resolution

Search Result 1,452, Processing Time 0.028 seconds

Development of an Input File Preparation Tool for Offline Coupling of DNDC and DSSAT Models (DNDC 지역별 구동을 위한 입력자료 생성 도구 개발)

  • Hyun, Shinwoo;Hwang, Woosung;You, Heejin;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.68-81
    • /
    • 2021
  • The agricultural ecosystem is one of the major sources of greenhouse gas (GHG) emissions. In order to search for climate change adaptation options which mitigate GHG emissions while maintaining crop yield, it is advantageous to integrate multiple models at a high spatial resolution. The objective of this study was to develop a tool to support integrated assessment of climate change impact b y coupling the DSSAT model and the DNDC model. DNDC Regional Input File Tool(DRIFT) was developed to prepare input data for the regional mode of DNDC model using input data and output data of the DSSAT model. In a case study, GHG emissions under the climate change conditions were simulated using the input data prepared b y the DRIFT. The time to prepare the input data was increased b y increasing the number of grid points. Most of the process took a relatively short time, while it took most of the time to convert the daily flood depth data of the DSSAT model to the flood period of the DNDC model. Still, processing a large amount of data would require a long time, which could be reduced by parallelizing some calculation processes. Expanding the DRIFT to other models would help reduce the time required to prepare input data for the models.

Changes in the Spatiotemporal Patterns of Precipitation Due to Climate Change (기후변화에 따른 강수량의 시공간적 발생 패턴의 변화 분석)

  • Kim, Dae-Jun;Kang, DaeGyoon;Park, Joo-Hyeon;Kim, Jin-Hee;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.424-433
    • /
    • 2021
  • Recent climate change has caused abnormal weather phenomena all over the world and a lot of damage in many fields of society. Particularly, a lot of recent damages were due to extreme precipitation, such as torrential downpour or drought. The objective of this study was to analyze the temporal and spatial changes in the precipitation pattern in South Korea. To achieve this objective, this study selected some of the precipitation indices suggested in previous studies to compare the temporal characteristics of precipitation induced by climate change. This study selected ten ASOS observatories of the Korea Meteorological Administration to understand the change over time for each location with considering regional distribution. This study also collected daily cumulative precipitation from 1951 to 2020 for each point. Additionally, this study generated high-resolution national daily precipitation distribution maps using an orographic precipitation model from 1981 to 2020 and analyzed them. Temporal analysis showed that although annual cumulative precipitation revealed an increasing trend from the past to the present. The number of precipitation days showed a decreasing trend at most observation points, but the number of torrential downpour days revealed an increasing trend. Spatially, the number of precipitation days and the number of torrential downpour days decreased in many areas over time, and this pattern was prominent in the central region. The precipitation pattern of South Korea can be summarized as the fewer precipitation days and larger daily precipitation over time.

Past, Present and Future of Geospatial Scheme based on Topo-Climatic Model and Digital Climate Map (소기후모형과 전자기후도를 기반으로 한 지리공간 도식의 과거, 현재 그리고 미래)

  • Kim, Dae-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.268-279
    • /
    • 2021
  • The geospatial schemes based on topo-climatology have been developed to produce digital climate maps at a site-specific scale. Their development processes are reviewed here to derive the needs for new schemes in the future. Agricultural and forestry villages in Korea are characterized by complexity and diversity in topography, which results in considerably large spatial variations in weather and climate over a small area. Hence, the data collected at a mesoscale through the Automated Synoptic Observing System (ASOS) operated by the Korea Meteorological Administration (KMA) are of limited use. The geospatial schemes have been developed to estimate climate conditions at a local scale, e.g., 30 m, lowering the barriers to deal with the processes associated with production in agricultural and forestry industries. Rapid enhancement of computing technologies allows for near real-time production of climate information at a high-resolution even in small catchment areas and the application to future climate change scenarios. Recent establishment of the early warning service for agricultural weather disasters can provide growth progress and disaster forecasts for cultivated crops on a farm basis. The early warning system is being expanded worldwide, requiring further advancement in geospatial schemes and digital climate mapping.

Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring (핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지)

  • Song, Ahram;Lee, Changhui;Lee, Jinmin;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.991-1005
    • /
    • 2022
  • Satellite imaging is an effective supplementary data source for detecting and verifying nuclear activity. It is also highly beneficial in regions with limited access and information, such as nuclear installations. Time series analysis, in particular, can identify the process of preparing for the conduction of a nuclear experiment, such as relocating equipment or changing facilities. Differences in the semantic segmentation findings of time series photos were employed in this work to detect changes in meaningful items connected to nuclear activity. Building, road, and small object datasets made of KOMPSAT 3/3A photos given by AIHub were used to train deep learning models such as U-Net, PSPNet, and Attention U-Net. To pick relevant models for targets, many model parameters were adjusted. The final change detection was carried out by including object information into the first change detection, which was obtained as the difference in semantic segmentation findings. The experiment findings demonstrated that the suggested approach could effectively identify altered pixels. Although the suggested approach is dependent on the accuracy of semantic segmentation findings, it is envisaged that as the dataset for the region of interest grows in the future, so will the relevant scope of the proposed method.

Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques (드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발)

  • Ryu, Jae-Hyun;Han, Jung-Gon;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.535-543
    • /
    • 2022
  • A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Estimation of Storage Capacity using Topographical Shape of Sand-bar and High Resolution Image in Urban Stream (도시하천의 지형태 자료와 영상정보를 이용한 수체적 시험평가)

  • Lee, Hyun Seok;Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.445-450
    • /
    • 2008
  • Recently, environmental and ecological approaches is in progress in urban stream, especially the guarantee of instream flow becomes very important. In this paper, it is suggested that water volume estimation method utilizing the topographical shape data obtained by field investigation and satellite image to manage the urban stream efficiently. The data obtained at Gap River is the study area are analysed and those results are as belows. First, surveying to investigate topographic shape characteristics of urban stream is carried out. In details, the gradient characteristics from water surface to bottom in case of sand area and in case of grass area are 0.013 and 0.065 respectively. In conclusion, the gradient characteristic of grass area is five times bigger than that of sand area. Besides, IKONOS image is classified by spectrum analysis and Minimum Distance Method and the sand area extraction method by the generalization method as Median filter is suggested to calculate water volume. Finally, mapping process on the sand area extracted from the topographical shape field data in river and satellite images is carried out by the GIS spatial analysis. And on the assumption that the water level was 1m at that time when satellite image was taken, the water volume was $225,258m^3$. It is clarified that the effect of water volume improvement was about 10.5% in comparison with water volume that had no consideration on the gradient characteristics of sand-bar.

Classification of Industrial Parks and Quarries Using U-Net from KOMPSAT-3/3A Imagery (KOMPSAT-3/3A 영상으로부터 U-Net을 이용한 산업단지와 채석장 분류)

  • Che-Won Park;Hyung-Sup Jung;Won-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1679-1692
    • /
    • 2023
  • South Korea is a country that emits a large amount of pollutants as a result of population growth and industrial development and is also severely affected by transboundary air pollution due to its geographical location. As pollutants from both domestic and foreign sources contribute to air pollution in Korea, the location of air pollutant emission sources is crucial for understanding the movement and distribution of pollutants in the atmosphere and establishing national-level air pollution management and response strategies. Based on this background, this study aims to effectively acquire spatial information on domestic and international air pollutant emission sources, which is essential for analyzing air pollution status, by utilizing high-resolution optical satellite images and deep learning-based image segmentation models. In particular, industrial parks and quarries, which have been evaluated as contributing significantly to transboundary air pollution, were selected as the main research subjects, and images of these areas from multi-purpose satellites 3 and 3A were collected, preprocessed, and converted into input and label data for model training. As a result of training the U-Net model using this data, the overall accuracy of 0.8484 and mean Intersection over Union (mIoU) of 0.6490 were achieved, and the predicted maps showed significant results in extracting object boundaries more accurately than the label data created by course annotations.

Semantic Segmentation of Hazardous Facilities in Rural Area Using U-Net from KOMPSAT Ortho Mosaic Imagery (KOMPSAT 정사모자이크 영상으로부터 U-Net 모델을 활용한 농촌위해시설 분류)

  • Sung-Hyun Gong;Hyung-Sup Jung;Moung-Jin Lee;Kwang-Jae Lee;Kwan-Young Oh;Jae-Young Chang
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1693-1705
    • /
    • 2023
  • Rural areas, which account for about 90% of the country's land area, are increasing in importance and value as a space that performs various public functions. However, facilities that adversely affect residents' lives, such as livestock facilities, factories, and solar panels, are being built indiscriminately near residential areas, damaging the rural environment and landscape and lowering the quality of residents' lives. In order to prevent disorderly development in rural areas and manage rural space in a planned manner, detection and monitoring of hazardous facilities in rural areas is necessary. Data can be acquired through satellite imagery, which can be acquired periodically and provide information on the entire region. Effective detection is possible by utilizing image-based deep learning techniques using convolutional neural networks. Therefore, U-Net model, which shows high performance in semantic segmentation, was used to classify potentially hazardous facilities in rural areas. In this study, KOMPSAT ortho-mosaic optical imagery provided by the Korea Aerospace Research Institute in 2020 with a spatial resolution of 0.7 meters was used, and AI training data for livestock facilities, factories, and solar panels were produced by hand for training and inference. After training with U-Net, pixel accuracy of 0.9739 and mean Intersection over Union (mIoU) of 0.7025 were achieved. The results of this study can be used for monitoring hazardous facilities in rural areas and are expected to be used as basis for rural planning.

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.