• Title/Summary/Keyword: High-sensitivity Radiation Detection

Search Result 38, Processing Time 0.023 seconds

A detector system for searching lost γ-ray source

  • Khan, Waseem;He, Chaohui;Cao, Yu;Khan, Rashid;Yang, Weitao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1524-1531
    • /
    • 2020
  • The aim of this work is to develop a Geiger-Muller (GM) detector system for robot to look for a radioactive source in case of a nuclear emergency or in a high radiation environment. In order to find a radiation source easily, a detector system, including 3 detectors, was designed to search γ-ray radiation sources autonomously. First, based on GEANT4 simulation, radiation dose rates in 3 Geiger-Muller (GM) counters were simulated at different source-detector distances, distances between detectors and angles. Various sensitivity analyses were performed experimentally to verify the simulated designed detector system. A mono-energetic 137Cs γ-ray source with energy 662 keV and activity of 1.11 GBq was used for the observation. The simulated results were compared with the experimental dose rate values and good agreements were obtained for various cases. Only based on the dose rates in three detectors, the radiation source with a specific source activity and angle was localized in the different location. A method was adopted with the measured dose rates and differences of distances to find the actual location of the lost γ-ray source. The corresponding angles of deviation and detection limits were calculated to determine the sensitivity and abilities of our designed detector system. The proposed system can be used to locate radiation sources in low and high radiation environments.

Upgrade of Neutron Energy Spectrometer with Single Multilayer Bonner Sphere Using Onion-like Structure

  • Mizukoshi, Tomoaki;Watanabe, Kenichi;Yamazaki, Atsushi;Uritan, Akira;Iguchi, Tetsuo;Ogata, Tomohiro;Muramatsu, Takashi
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.185-190
    • /
    • 2016
  • Background: In order to measure neutron energy spectra, the conventional Bonner Sphere Spectrometers (BSS) are widely used. In this spectrometer, several measurements with different size Bonner spheres are required. Operators should, therefore, place these spheres in several times to a measurement point where radiation dose might be relatively high. In order to reduce this effort, novel neutron energy spectrometer using an onion-like single Bonner sphere was proposed in our group. This Bonner sphere has multiple sensitive spherical shell layers in the single sphere. In this spectrometer, a band-shaped thermal neutron detection medium, which consists of a LiF-ZnS mixed powder scintillator sheet and a wavelength-shifting (WLS) fiber readout, was looped to each sphere at equal angular intervals. Amount of LiF neutron converter is reduced near polar region, where the band-shaped detectors are concentrated, in order to uniform the directional sensitivity. The LiF-ZnS mixed powder has an advantage of extremely high light yield. However, since it is opaque, scintillation photons cannot be collect uniformly. This type of detector shows no characteristic shape in the pulse height spectrum. Subsequently, it is difficult to set the pulse height discrimination level. This issue causes sensitivity fluctuation due to gain instability of photodetectors and/or electric modules. Materials and Methods: In order to solve this problem, we propose to replace the LiF-ZnS mixed powder into a flexible and Transparent RUbber SheeT type $LiCaAlF_6$ (TRUST LiCAF) scintillator. TRUST LiCAF scintillator can show a peak shape corresponding to neutron absorption events in the pulse height spectrum. Results and Discussion: We fabricated the prototype detector with five sensitive layers using TRUST LiCAF scintillator and conducted basic experiments to evaluate the directional uniformity of the sensitivity. Conclusion: The fabricated detector shows excellent directional uniformity of the neutron sensitivity.

Value of imaging study in predicting pelvic lymph node metastases of uterine cervical cancer

  • Jung, Wonguen;Park, Kyung Ran;Lee, Kyung-Ja;Kim, Kyubo;Lee, Jihae;Jeong, Songmi;Kim, Yi-Jun;Kim, Jiyoung;Yoon, Hai-Jeon;Kang, Byung-Chul;Koo, Hae Soo;Sung, Sun Hee;Cho, Min-Sun;Park, Sanghui
    • Radiation Oncology Journal
    • /
    • v.35 no.4
    • /
    • pp.340-348
    • /
    • 2017
  • Purpose: To evaluate the diagnostic accuracy of computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) in predicting pelvic lymph node (LN) metastases in patients with cervical cancer. Materials and Methods: From January 2009 to March 2015, 114 patients with FIGO stage IA1-IIB uterine cervical cancer who underwent hysterectomy with pelvic lymphadenectomy and took CT, MRI, and PET/CT before surgery were enrolled in this study. The criteria for LN metastases were a LN diameter ${\geq}1.0cm$ and/or the presence of central necrosis on CT, a LN diameter ${\geq}1.0cm$ on MRI, and a focally increased FDG uptake on PET/CT. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for pelvic LN metastases were estimated. Results: The sensitivity, specificity, PPV, NPV, and accuracy for detection of pelvic LN metastases were 51.4%, 85.9%, 41.3%, 90.1%, and 80.3% for CT; 24.3%, 96.3%, 56.3%, 86.8%, and 84.6% for MRI; and 48.6%, 89.5%, 47.4%, 90.0%, and 82.9% for PET/CT, respectively. The sensitivity of PET/CT and CT was higher than that of MRI (p=0.004 and p= 0.013, respectively). The specificity of MRI was higher than those of PET/CT and CT (p=0.002 and p=0.001, respectively). The difference of specificity between PET/CT and CT was not statistically significant (p=0.167). Conclusion: These results indicate that preoperative CT, MRI, and PET/CT showed low to moderate sensitivity and PPV, and moderate to high specificity, NPV, and accuracy. More efforts are necessary to improve sensitivity of imaging modalities in order to predict pelvic LN metastases.

Design and Implementation of an optical wavelength analyzer (CCD 카메라를 이용한 방사선 탐지기의 영상화 기술 연구)

  • Park, Sung-hoon;Park, Jong Won;Lee, Nam-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.811-813
    • /
    • 2013
  • In order to measure the radiation, there are types of sensors plurality. I was using the detection method and sensitivity of the CCD sensor in the scintillator and collimator in the sensor. In this study, in order to detect radiation using a CCD sensor with high resolution, by measuring the radiation dose by processing the visible light generated in response to radiation of the image coming into the CCD in the scintillator in space it is to present a pointer that radiation comes out most. It is intended to imaging by calculation of the distance to the radiation source to the implementation of the stereo camera system video in the future.

  • PDF

Improvement of detection sensitivity of impurities on Si wafer surface using synchrotron radiation (방사광을 이용한 Si 웨이퍼 표면불순물 검출감도 향상)

  • 김흥락;김광일;강성건;김동수;윤화식;류근걸;김영주
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.1
    • /
    • pp.13-19
    • /
    • 1999
  • Total reflection X-ray fluorescence spectroscopy using synchrotron radiation source called as TRSFA was explored to achieve high sensitivities to impurity metals on Si wafer surface. It consists of monochromating part to select a specific wavelength, slit part to shield direct beam and to control monochromated beam, and main chamber to dectect fluorescent X-ray counts of impurities on si wafer. Monochromated X-ray of 10.90 KeV was selected and the optimum total reflection condition on silicon wafer was obtained through tuning the dead time and fluorescent X-ray count of Si and Fe. TRSFA system could increase the sensitivity as high as 50 times in comparision with TRXFA using normal X-ray source. But the trend was varied since the surface conditions of Si wafers and, therefore, the reflectivities were different. Furthemore, there seems to be a promising path to reaching a detection limit useful to the next generation metal impurities control, because Fe impurity below to the $5\times10^{9}\textrm{atomas/cm}^2$ can be detectable through the developed TRSFA system.

  • PDF

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

Upgrade of gamma electron vertex imaging system for high-performance range verification in pencil beam scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Cho, Sungkoo;Jo, Kwanghyun;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1016-1023
    • /
    • 2022
  • In proton therapy, a highly conformal proton dose can be delivered to the tumor by means of the steep distal dose penumbra at the end of the beam range. The proton beam range, however, is highly sensitive to range uncertainty, which makes accurately locating the proton range in the patient difficult. In-vivo range verification is a method to manage range uncertainty, one of the promising techniques being prompt gamma imaging (PGI). In earlier studies, we proposed gamma electron vertex imaging (GEVI), and constructed a proof-of-principle system. The system successfully demonstrated the GEVI imaging principle for therapeutic proton pencil beams without scanning, but showed some limitations under clinical conditions, particularly for pencil beam scanning proton therapy. In the present study, we upgraded the GEVI system in several aspects and tested the performance improvements such as for range-shift verification in the context of line scanning proton treatment. Specifically, the system showed better performance in obtaining accurate prompt gamma (PG) distributions in the clinical environment. Furthermore, high shift-detection sensitivity and accuracy were shown under various range-shift conditions using line scanning proton beams.

Development of simultaneous multi-channel data acquisition system for large-area Compton camera (LACC)

  • Junyoung Lee;Youngmo Ku;Sehoon Choi;Goeun Lee ;Taehyeon Eom ;Hyun Su Lee ;Jae Hyeon Kim ;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3822-3830
    • /
    • 2023
  • The large-area Compton camera (LACC), featuring significantly high detection sensitivity, was developed for high-speed localization of gamma-ray sources. Due to the high gamma-ray interaction event rate induced by the high sensitivity, however, the multiplexer-based data acquisition system (DAQ) rapidly saturated, leading to deteriorated energy and imaging resolution at event rates higher than 4.7 × 103 s-1. In the present study, a new simultaneous multi-channel DAQ was developed to improve the energy and imaging resolution of the LACC even under high event rate conditions (104-106 s-1). The performance of the DAQ was evaluated with several point sources under different event rate conditions. The results indicated that the new DAQ offers significantly better performance than the existing DAQ over the entire energy and event rate ranges. Especially, the new DAQ showed high energy resolution under very high event rate conditions, i.e., 6.9% and 8.6% (for 662 keV) at 1.3 × 105 and 1.2 × 106 s-1, respectively. Furthermore, the new DAQ successfully acquired Compton images under those event rates, i.e., imaging resolutions of 13.8° and 19.3° at 8.7 × 104 and 106 s-1, which correspond to 1.8 and 73 μSv/hr or about 18 and 730 times the background level, respectively.

The study of PbO's sintering effect for high efficiency x-ray detection sensor (고효율 방사선 검출 센서를 위한 PbO 박막의 소결효과에 대한 연구)

  • Jung, Suk-Hee;Kim, Yoon-Suk;Kim, Young-Bin;Kim, Min-Woo;Oh, Kyung-Min;Yun, Min-Seok;Nam, Sang-Hee;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.3
    • /
    • pp.37-40
    • /
    • 2009
  • In this study, we made a high efficiency x-ray detecting sensor using the lead oxide(PbO) that are used in direct method of x-ray detector. PbO with nano size particles is produced by sol-gel method for high efficiency. The produced PbO with nano size is deposited on ITO(Induim Tin Oxide) glass in several temperature using the PIB(particle-in-binder) method. The thickness of the deposited PbO is about $200{\mu}m$. Through the measurement of dark current, sensitivity and SNR(Signal To Noise Ratio), an electrical properties of the produced PbO film are analyzed. Therefore, we show that an electrical properties are changed according to a temperature and that the PbO film that was treated at $500^{\circ}C$ in O2 atmosphere is the most high efficiency x-ray detecting sensor.

  • PDF