• Title/Summary/Keyword: High-rise Structures

Search Result 746, Processing Time 0.024 seconds

An Experimental Study of Fire Risk Characteristic by Extended Balcony of High-Rise Apartments in Fire (고층아파트 화재시 발코니 확장에 따른 화재 위험성에 관한 실험 연구)

  • Kim, Woo-Suk;Kim, Wha-Jung;Lee, Gwang-Won;Lee, Ji-Hee
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.65-71
    • /
    • 2012
  • Changes in the styles of communities are leading of increases in the number of high-rise apartments and commercial-apartment structures. Tall high-rise structures, while presenting unique economies of scale and cost effectiveness, tend to be highly engineered and complex structures. In the event of a fire, this complexity in design also results in a complexity in the behavior of fire propagation and control. High-rise structures are among the most potentially dangerous due to the high population density in the building, and the inherent limitations on evacuation and on fire control services. One of the most critical points of fire propagation is the movement of fire through the outer wall structures. Controlling such propagation is essential in controlling the spread of the fire throughout the building itself, as well as controlling the potential for its spread to adjacent buildings. In this study, we will be examining the potential for fire control design and effects mitigation using a 1/4.5 scale model. The primary focus of the study will be the effects of extended balconies into the structure of high-rise apartments. The authors will also consider the effectiveness of reduced-scale model tests.

A Case Study on the Method of High-rise Wall in Rammed Earth Construction (고층형 흙다짐 공법의 사례 연구)

  • Lee, JongKook;Kim, HoChun;Lee, SangWon
    • KIEAE Journal
    • /
    • v.8 no.3
    • /
    • pp.85-91
    • /
    • 2008
  • We intends to understand the rammed earth method and suggest the possibilities of adoption on high-rise rammed earth structures through the case study on the method. The rammed earth construction has been regarded as one of the solutions in the modern environmental-friendly construction field, thus according to such trend, this study tries to find out the limitations of the rammed earth structures to be multistory and grope for solutions in the attached wall construction method. The procedures of this research is to figure out the limitations of rammed earth structures through theoretical consideration on those structures and analyze the actual cases of them, and to assure the possibilities on the development of the rammed earth method that can make the structures multistory earthen structures in the rammed earth method and induce immediate issues for it.

Predicting the lateral displacement of tall buildings using an LSTM-based deep learning approach

  • Bubryur Kim;K.R. Sri Preethaa;Zengshun Chen;Yuvaraj Natarajan;Gitanjali Wadhwa;Hong Min Lee
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.379-392
    • /
    • 2023
  • Structural health monitoring is used to ensure the well-being of civil structures by detecting damage and estimating deterioration. Wind flow applies external loads to high-rise buildings, with the horizontal force component of the wind causing structural displacements in high-rise buildings. This study proposes a deep learning-based predictive model for measuring lateral displacement response in high-rise buildings. The proposed long short-term memory model functions as a sequence generator to generate displacements on building floors depending on the displacement statistics collected on the top floor. The model was trained with wind-induced displacement data for the top floor of a high-rise building as input. The outcomes demonstrate that the model can forecast wind-induced displacement on the remaining floors of a building. Further, displacement was predicted for each floor of the high-rise buildings at wind flow angles of 0° and 45°. The proposed model accurately predicted a high-rise building model's story drift and lateral displacement. The outcomes of this proposed work are anticipated to serve as a guide for assessing the overall lateral displacement of high-rise buildings.

Dynamic Characterization of Large-scale Structures through Mobile-phone Application (휴대폰 애플리케이션을 통한 초대형 구조물의 동적특성 분석)

  • Jung, Young-Seok;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.99-105
    • /
    • 2015
  • The serviceability design of the high-rise building is affected by the wind response vibration such as the acceleration, at this time it is important to calculate the natural frequency correctly. Since the suggestion equation of the natural frequency being used in the design phase is not the regression equation obtained from the vibration measurement of the high-rise building, the verification to use for the serviceability design of the high-rise building is necessary. This thesis conducted an ambient vibration measuring on the high-rise building through the mobile-phone application to calculate the natural frequency and suggested a natural frequency approximate expression following the building's height, and compared with the domestic/foreign standard and the result of the eigen-value analysis.

Dynamic Response Analysis of Twisted High-Rise Structures by Plane Rotation Angle (비틀어진 형상(Twisted) 고층 구조물의 평면 회전 각도별 동적 응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.1
    • /
    • pp.105-112
    • /
    • 2021
  • In this paper, the dynamic response was analyzed by performing linear dynamic analysis using historic earthquake loads on twisted-shaped structures and fixed structure among free-form high-rise structures with atypical elevation shape following prior studies. In addition, the dynamic characteristics of the analysis models according to the plane rotation angle of the twisted structure were compared and analyzed. As a result of the analysis, as the plane rotation angle of the twisted structure increased, the interlayer deformation rate increased in the high-rise part of 50th floors or more. The story shear force and the story absolute acceleration were similar in the entire structure. In the case of the story shear force, the response of the twisted shape model was rather reduced in the middle part. As a result of analyzing the dynamic response, the vulnerable layer where the response amplification of the twisted structure occurs was found to be 31st story.

The Reduction of Temperature Rise in High Strength Concrete (고강도용 콘크리트의 온도상승 저감대책)

  • 문한영;문대중;하상욱;서정우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.133-139
    • /
    • 1996
  • As construction technology advances, most of civil engineering structures are becoming larger and taller. Therefore, high strength concrete is necessary for them. For high strength concrete, it needs a large amount of unit cement content and low water-cement ratio inevitably, so that a large amount of heat occurs in concrete. The thermal cracks make the durability and quality of concrete structures become worse, result from temperature rise and thermal stress due to heat of hydration. In this study, the proposal of using ground granulated blast furnace slag, fly ash and chemical admixtures was investigated to decrease the temperature rise of concrete.

  • PDF

A Study on the Characteristic Micro-Climate in the City using Computerized Fluid Analysis and Actual Measurement (전산유체해석과 실측을 이용한 도심내 미기후 특성에 대한 연구)

  • You, Jang-Youl;Park, Min-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • Microclimate analysis was conducted through actual measurement according to land use status in urban, and CFD analysis was conducted to analyze and predict the microclimate characteristics of urban, and compared and analyzed with the actual measurement results. It was measured in high-rise areas and parks, and the temperature of the park area was 0.4 to 0.6℃ lower, and the relative humidity was 1.0 to 3.0% higher. The correlation coefficient was obtained by comparing the results of the computational fluid analysis with the results of the computational fluid analysis at the actual location located within the CFD analysis area for validation. The seasonal correlation coefficients are all higher than 0.8, so it is judged that they can be applied to microclimate analysis in urban area. The computational fluid analysis was divided into three areas (low-rise, low and high-rise, and high-rise) centered on the A2 point. On average, the low-rise area was 0.1 to 0.4% higher than the high-rise area. In the low and high-rise area and high-rise area, the pith of buildings are wide, so the airflow is smooth, so it is judged that the temperature is relatively low.

Numerical study for downburst wind and its load on high-rise building

  • Huang, Guoqing;Liu, Weizhan;Zhou, Qiang;Yan, Zhitao;Zuo, Delong
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.89-100
    • /
    • 2018
  • 3D simulations based on an impinging jet were carried out to investigate the flow field of a steady downburst and its effects on a high-rise building by applying the SST k-${\omega}$ turbulence model. The vertical profile of radial wind speed obtained from the simulation was compared with experimental data and empirical models in order to validate the accuracy of the present numerical method. Then wind profiles and the influence of jet velocity and jet height were investigated. Focusing on a high-rise building, the flow structures around the building, pressure distributions on the building surfaces and aerodynamic forces were analyzed in order to enhance the understanding of wind load characteristics on a high-rise building immersed in a downburst.

Quasi-steady Across-wind Aerodynamic Damping of Tall Structures

  • Nguyen, Cung Huy;Long, Doan-Sy;Nguyen, Dinh Tung
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.4
    • /
    • pp.275-281
    • /
    • 2019
  • The paper presents a generalization of existing analytical approaches to determine the across-wind aerodynamic damping of tall structures through the quasi-steady theory. The theory takes into account the nature of non-uniform wind, structural mode shapes and the variation of structural parameters. Numerical applications on a prototype high-rise building and a real sculptural tower point out that the common approach may be over simplified, giving rise to inappropriate predictions of the aerodynamic damping. The role of the structural mode shapes, usually being neglected for uniform structures, is then highlighted.

Evaluating high performance steel tube-framed diagrid for high-rise buildings

  • Lee, Dongkyu;Ha, Taehyu;Jung, Miyoung;Kim, Jinho
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.289-303
    • /
    • 2014
  • In recent, development of construction and design technology gives taller, larger and heavier steel framed structures. With the tendency of increasing high-rise building, this study is strongly related to structural system, one of significant components in structural design. This study presents an innovative structural system, with high performance steel material, diagrid. Its detail, structural analysis, and structural experiments are all included for the development of new structures.