• Title/Summary/Keyword: High-resolution seismic survey

Search Result 65, Processing Time 0.234 seconds

Study on the enhancement of data quality from shallow water seismic reflection survey (천해저 지반조사를 위한 수면 탄성파 반사법 탐사자료의 분해능 향상 연구)

  • Kim, Jung-Yul;Kim, Yoo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.799-806
    • /
    • 2004
  • Recently, as the forerunner in establishing the Northeast Asia's logistics base, a lot of marine engineering works such as new ports and container terminals, extension of old ports, new bridges, land reclamation etc. have been progressed. Parallel to it, there is also an increasing demand for improving the safety of construction. In this situation, high resolution seismic reflection profiling can be well used, attempting to classify rocks and sediments under water, if possible, to delineate the distribution of grain sizes in sediments not only for calculating the cost of removing sediments from harbour's channels, but also for estimating the bearing capacities for bridge or port construction. However, the results from the corresponding reflection survey that has been in operation in our country can not be effectively used for engineering purposes mostly due to the insufficient resolution. Thus. in this paper, two innovative strategies are introduced to enhance resolution. The one deals with a newly designed exploration barge that will help reduce several kinds of noises encountered electrically or operationally. The other is associated with an establishment of optimum measuring system comprising e.g. a specially devised hydrophone with a combination of 7 piezoelectric elements. Field experiments performed at Busan harbour are illustrated. The quality of acquired data was thereby fundamentally improved in comparison with that obtained at the same time in a conventional way.

  • PDF

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

Subsurface Geological Structure Using Shallow Seismic Reflection Survey (반사법 탄성파 탐사를 이용한 천부 지질 구조)

  • Kim Gyu-Han;Kong Young-Sae;Oh Jinyong;Lee Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.8-16
    • /
    • 1999
  • In terms of high resolution, seismic reflection survey is by far the most significant geophysical method applied to define subsurface structure. In shallow seismic reflection survey, it is, however, difficult to obtain high resolution image due to both the wave attenuation in the unconsolidated layer and the existence of source-generated surface waves Therefore, when collecting data, it is imperative to select proper equipments and choose optimum field data acquisition parameters for acquiring high S/N data. In this survey, a small size hammer was used as a low energy source and 40-Hz vertical geophones were used as receivers. Trigger signal was obtained from the hammer starter attached in the aluminum plate and thus it was possible to control the source onset time for the vertical stack. During the field work, a modified standard CMP technique was introduced to achieve the many-fold CMP data effectively. Data processing was conducted by the 'Seismic Unix' which is mounted on PC with a Linux operating system. The main distinctions were the emphasis and detail placed on near-surface velocity analysis and the extra care exercised in muting.

  • PDF

Detailed Processing and Analysis on the Single-channel Seismic Data for Site Survey of Daecheon-Wonsando Subsea Tunnel (대천-원산도 해저터널 부지조사를 위한 단일채널 탄성파자료의 정밀 처리 및 분석)

  • Kim, Won-Sik;Park, Keun-Pil;Kim, Hyun-Do;Cheong, Snons;Koo, Nam-Hyung;Lee, Ho-Young;Park, Eui-Seob
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.336-348
    • /
    • 2010
  • The Single-channel seismic survey with the source of bubble pulser and drilling survey was carried out in 2008 and 2009 for the site survey of Daecheon-Wonsando area, which was a proposed area of Korea-China subsea tunnel. The goal of this study is to analyze the depth and characteristics of acoustic basement for the stability assessment and tunnel design in this proposed area through combining drilling data with this single-channel seismic data after detailed processing. For this purpose, among the data processing schemes which are usually applied to multi-channel seismic data, we applied the F-K filtering to eliminate the AC(alternating current) noise and the post-stack depth migration to produce depth section. As a result, we verified that the improved depth section could be obtained from single-channel seismic data, and the distribution and characteristics of basement could be analyzed in survey area through the combined analysis with drilling data. However, we could not interpret the detailed structures, fault and fracture zone, due to the quality of bubble pulser source and single-channel data. We expect that those detailed structures can be analyzed when higher resolution seismic data is provided. Therefore, we recommend some items for future seismic survey of subsea tunnel to obtain the high resolution seismic data.

Sedimentary Environment and Sequence Study using High Resolution Seismic Survey in Gyunggi Bay, the Yellow Sea (서해 경기만에서의 고해상도 탄성파 탐사를 이용한 퇴적환경 및 퇴적층서 연구)

  • Lee, Gwang-Soo;Kim, Dae-Choul;Seo, Young-Kyo;Yi, Hi-Il;Yoo, Shin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.683-694
    • /
    • 2009
  • High-resolution (Chirp and Sparker system) seismic profiles were analyzed to investigate the sedimentary sequence and distribution pattern of the late Holocene deposits in Gyunggi Bay, the Yellow Sea. The bay is located in the western part of Korea, east of the Yellow Sea. The sedimentary sequence divided into three units bounded by erosional bounding surface: (1) acoustically parallel to subparallel reflectors with cross bedding structures (Unit 1); (2) confused inner reflectors and top of unit exposed partially at the seafloor (Unit 2); and (3) approximately parallel reflections and regressive to transgressive incision-fills (Unit 3). On the basis of seafloor morphology, surface bedforms, and subbotom acoustic characters, echo types in the study area were identified following the schemes of Chough et al. (2002); (1) flat seafloor with sharp bottom echoes (echo types 1-1, 1-2 and 1-3; transgressive sediment sheets or relict sands), (2) mounded seafloor with either smooth surface or superposed bedforms (echo types 2-1 and 2-2; tidal ridges), and (3) various-scale eroded seafloor (echo types 3-1 and 3-2; channels). Suspect features of acoustic turbid zones which is related to gas charged sediment are reported.

Near-surface geophysical studies in the Ulsan Fault Zone of Korea (한국 울산단층대에서의 천부지구물리 연구)

  • Kim, Ki-Young;Kim, Dong-Hoon;Lee, So-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.78-84
    • /
    • 2008
  • Recent earthquakes near nuclear power plants in Korea have triggered public concerns about possible seismicity of the Ulsan Fault Zone in the south-eastern part of the Korean peninsula. To reveal subsurface structures of this fault zone, we conducted high-resolution seismic refraction and reflection surveys, and closely spaced gravity measurements in the Dongchon River valley north of Ulsan, Korea. Here alluvium covers the north-south trending fault zone in a 1-km wide valley. Both source points and receivers were spaced at 5-m intervals for the 24-channel seismic refraction and reflection methods, along two profiles of 835 m and 415 m length. Gravity data were also measured along these profiles at 131 stations using a 10-m interval. Synergetic interpretation of seismic refraction, high-resolution seismic reflection, and gravity surveys across the valley indicates that the Ulsan Fault Zone was formed by apparent north-south strike-slip motions during the Cretaceous, and that some faults may have been reactivated by east-west compressional or transpressional stresses during the Tertiary or Quaternary.

A Case Study of Sea Bottom Detection Within the Expected Range and Swell Effect Correction for the Noisy High-resolution Air-gun Seismic Data Acquired off Yeosu (잡음이 포함된 여수근해 고해상 에어건 탄성파 탐사자료에 대한 예상 범위에서의 해저면 선정 및 너울영향 보정 사례)

  • Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.116-131
    • /
    • 2019
  • In order to obtain high-quality high-resolution marine seismic data, the survey needs to be carried out at very low-sea condition. However, the survey is often performed with a slight wave, which degrades the quality of data. In this case, it is possible to improve the quality of seismic data by detecting the exact location of the sea bottom signal and eliminating the influence of waves or swells automatically during data processing. However, if noise is included or the sea bottom signal is weakened due to sea waves, sea bottom detection errors are likely to occur. In this study, we applied a method reducing such errors by estimating the sea bottom location, setting a narrow detection range and detecting the sea bottom location within this range. The expected location of the sea bottom was calculated using previously detected sea bottom locations for each channel of multi-channel data. The expected location calculated in each channel is also compared and verified with expected locations of other channels in a shot gather. As a result of applying this method to the noisy 8-channel high-resolution air-gun seismic data acquired off Yeosu, the errors in selecting the strong noise before sea bottom or the strong subsurface reflected signal after the sea bottom signal are remarkably reduced and it is possible to produce the high-quality seismic section with the correction of ~ 2.5 m swell effect.

Directional Characteristics of Sleeve-gun Arrays in Marine Seismic Survey (해양 탄성파 탐사에서 슬리브건 배열의 방향 특성)

  • Yoo, Hai-Soo;Yang, Sung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • Characteristics of sleeve-gun arrays installed on the R/V Onnuri were analyzed and compared with survey data. In the case of cluster array, the beam width in the frequency range up to 814Hz is constant as $179.5^{\circ}$, and rapidly narrows in the frequency range of 814-1631Hz. However, in the case of long and wide arrays, as the frequency increases, the beamwidth decreases. The optimal frequency is 69Hz. the main lobe of vertical inclination has its maximum amplitude at phase angle $0^{\circ}$. The optimal frequency of cluster array which produces little side lobe is less than 1631Hz, and those of long and wide arrays are less than 108Hz. As a result, the cluster array produces a good source for high-resolution seismic survey, while the long and wide arrays are suitable for the survey of deep structures. The final high-resolution seismic section with cluster array was compared with that of long and wide arrays.

  • PDF

Geophysical Methods applied for Gas Hydrate Exploration in the East Sea (동해 가스하이드레이트 탐사에 적용한 지구물리탐사 방법)

  • Lee, Ho-Young;Park, Keun-Pil;Yoo, Dong-Geun;Koo, Nam-Hyung;Kim, Won-Sik;Kim, Byoung-Yeop;Kan, Dong-Hyo;Kim, Han-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.12a
    • /
    • pp.53-62
    • /
    • 2007
  • Preliminary gas hydrate surveys were carried out From 2000 to 2004 in the East Sea. Research results showed the geophysical evidence of gas hydrate existence. In 2005, Gas Hydrate R&D Organization was established and 10 year gas hydrate development program was initiated. In the $1^{st}$ stage of the program from 2005 to 2007, 6,600 L-km 2-D seismic survey was conducted in the $1^{st}$ year 2005, and $400\;km^2$ 3D survey was conducted in the $2^{nd}$ year 2006. Acquired seismic data were processed and seismic section and 3D cube were produced. By geophysical interpretation and velocity analysis, prospective areas were mapped and candidate drilling sites were recommended. For the precise interpretation, velocity was analyzed using AVO method, and BSR signal was analyzed using deconvolution method. For the prospective area, OBS and high-resolution seismic surveys were conducted. This presentation shows the introduction and examples of the research results of the geophysical methods applied for the gas hydrate exploration in the East Sea.

  • PDF

On-Land Seismic Survey of Korea (한국의 육상 탄성파탐사)

  • Kwon, Byung-Doo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.441-450
    • /
    • 2006
  • The on-land seismic survey in Korea was begun in mid-1960s. Kim et al.(1967) of Korea Geological Survey reported on the result of gravity and seismic reflection surveys conducted in the Pohang area for the period of 1963-64 to assess its possibility of oil entrapment. Hyun and Kim (1966) carried out a refraction survey on the tunnel wall. Since then, the KGS geophysicists had conducted seismic surveys on Kyungsang sedimentary basin as a main project for several years. In 1970s, on-land seismic surveys had been conducted for various purposes such as site investigation for the nuclear power plants and industrial complex, exploration for ground water, mineral resources and underground tunnel. The first reflection survey with CMP acquisition was attempted in 1978 by using a digital recording system. But most of on-land seismic surveys had employed the refraction method until 1980s. In 1990s, high resolution reflection and various borehole seismic surveys such as tomography, uphole, downhole, cross-hole methods have been attempted by universities and engineering companies. The applications of on-land seismic surveys have been enlarged for both academic and industrial purposes such as investigation of geologic structure of the fault and tidal flat area, construction of highway, railroad and dam, geothermal energy and mineral resource exploration, environmental assessment for waste disposal sites and archaeological investigations. In 2002, the first crustal seismic survey was carried out on the profile of 294km length across the whole peninsular. It is expected that the advanced technology and experience acquired through offshore seismic surveys, which have been conducted in continental shelf of Korea and foreign oil fields, will stimulate the more active on-land seismic explorations.