• Title/Summary/Keyword: High-resolution satellite image

Search Result 627, Processing Time 0.027 seconds

GCP(GROUND CONTROL POINT) FOR AUTOMATION OF THE HIGH RESOLUTION SATELLITE IMAGE REVISION

  • Jo, Myung-Hee;Jung, Yun-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.219-222
    • /
    • 2007
  • Today, use of high resolution satellite image with at least 1m resolution is expanding into many more areas including forest, river way, city, seashore and so forth for disaster prevention. Interest in this medium is increasing among the general public due to the roll-out to the private sector as Google earth, Virtual Earth and so forth. However, pre-processing process that revises the geometrical distortion that result at the time of photographing is required in order to use high resolution satellite image. The purpose of this research is to search the most accurate GCP(Ground Control Point) information acquisition method that is used for the revision of high resolution satellite image's geometrical distortion through automated processing. Through this, it is possible to contribute to increasing the level of accuracy at the time of high resolution satellite image revision and to secure promptness.

  • PDF

A Study on Feature Extraction Using High-Resolution Satellite Image Data (고해상도 위성 영상데이터를 이용한 지형요소 추출에 관한 연구)

  • 김상철;신석효;안기원;이건기;서두천
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.181-185
    • /
    • 2003
  • Recently, in accordance with supplying high-resolution satellite images which as IKONOS, KVR-1000, and Quick Bird, the use of satellite images have increased in the study which extraction of features from high-resolution satellite images is becoming a new research focus. In this study, using generally involves such as image segmentation, filtering and sobel operator and thinning in image processing for extraction of feature from satellite image. We apply this method to extraction of feature which need to the revision of map from high-resolution IKONOS satellite image data, we verified the capability of extraction of feature and application using satellite image and proposed a plan for the study in the future.

  • PDF

Matching Performance Analysis of Upsampled Satellite Image and GCP Chip for Establishing Automatic Precision Sensor Orientation for High-Resolution Satellite Images

  • Hyeon-Gyeong Choi;Sung-Joo Yoon;Sunghyeon Kim;Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • The escalating demands for high-resolution satellite imagery necessitate the dissemination of geospatial data with superior accuracy.Achieving precise positioning is imperative for mitigating geometric distortions inherent in high-resolution satellite imagery. However, maintaining sub-pixel level accuracy poses significant challenges within the current technological landscape. This research introduces an approach wherein upsampling is employed on both the satellite image and ground control points (GCPs) chip, facilitating the establishment of a high-resolution satellite image precision sensor orientation. The ensuing analysis entails a comprehensive comparison of matching performance. To evaluate the proposed methodology, the Compact Advanced Satellite 500-1 (CAS500-1), boasting a resolution of 0.5 m, serves as the high-resolution satellite image. Correspondingly, GCP chips with resolutions of 0.25 m and 0.5 m are utilized for the South Korean and North Korean regions, respectively. Results from the experiment reveal that concurrent upsampling of satellite imagery and GCP chips enhances matching performance by up to 50% in comparison to the original resolution. Furthermore, the position error only improved with 2x upsampling. However,with 3x upsampling, the position error tended to increase. This study affirms that meticulous upsampling of high-resolution satellite imagery and GCP chips can yield sub-pixel-level positioning accuracy, thereby advancing the state-of-the-art in the field.

A Study on the Ceneration of Simulated High-Resolution Satellite Images (고해상도 모의위성영상 제작에 관한 연구)

  • 윤영보;조우석;박종현;이종훈
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.6
    • /
    • pp.327-336
    • /
    • 2002
  • Ever since high resolution satellites were launched, high-resolution satellite images have been utilized in many areas. This paper proposed methods of generating simulated satellite image using DEM(Digital Elevation Model) and digital image such as aerial photograph. There are two methods proposed in the paper: one is Direct-Indirect method and the other Indirect-Indirect, method. It is assumed that satellite attitude is not changing and perspective center is moving in the direction of flight while image is captured. The proposed methods were implemented with aerial photograph, DEM data, arbitrary orbit parameters and attitude parameters of high resolution satellite image under generation. Furthermore, for the stereo viewing, different orientation parameters and perspective center were tested for generating simulated satellite image. In addition, the quality and accuracy of the simulated satellite image generated by the proposed methods were analyzed.

Road Extraction Based on Watershed Segmentation for High Resolution Satellite Images

  • Chang, Li-Yu;Chen, Chi-Farn
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.525-527
    • /
    • 2003
  • Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.

  • PDF

High-Resolution Satellite Image Super-Resolution Using Image Degradation Model with MTF-Based Filters

  • Minkyung Chung;Minyoung Jung;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.395-407
    • /
    • 2023
  • Super-resolution (SR) has great significance in image processing because it enables downstream vision tasks with high spatial resolution. Recently, SR studies have adopted deep learning networks and achieved remarkable SR performance compared to conventional example-based methods. Deep-learning-based SR models generally require low-resolution (LR) images and the corresponding high-resolution (HR) images as training dataset. Due to the difficulties in obtaining real-world LR-HR datasets, most SR models have used only HR images and generated LR images with predefined degradation such as bicubic downsampling. However, SR models trained on simple image degradation do not reflect the properties of the images and often result in deteriorated SR qualities when applied to real-world images. In this study, we propose an image degradation model for HR satellite images based on the modulation transfer function (MTF) of an imaging sensor. Because the proposed method determines the image degradation based on the sensor properties, it is more suitable for training SR models on remote sensing images. Experimental results on HR satellite image datasets demonstrated the effectiveness of applying MTF-based filters to construct a more realistic LR-HR training dataset.

Designation of Buildings in Urban Area of High-resolution Satellite Image Using Generalized Hough Transform

  • Lee, Seung-Hee;Park, Sung-Mo;Lee, Joon-Whoan;Kim, Joon-Cheol
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.156-158
    • /
    • 2003
  • Analysis of high-resolution satellite image becomes important for cartography, surveillance, and remote sensing. However, there are lots of problems to be solved for automatic analysis of high-resolution satellite image especially in urban area. The problems are originated from the increased complexity due to the unnecessary details and shadows, and time-varying illuminations. Because of such obstacles, it seems impossible to make automatic analysis. This paper proposes a way of change detection of buildings in urban area by using digital vector map. The proposed way makes the buildings on the vector map parameterized, and searches them in the preprocessed high-resolution image by using generalized Hough transform. The searched building objects are overlaid on the satellite image. The overlaid image can help to detect the change of building rapidly.

  • PDF

DEVELOPMENT OF HIGH-RESOLUTION SATELLITE IMAGE PROCESSING SYSTEM BY USING CBD

  • Yoon, Chang-Pak;Seo, Ji-Hoon;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.49-52
    • /
    • 2002
  • High-resolution satellite image processing software should be able to ensure accurate, fast, compact data processing in offline or online environment. In this paper, component software for high-resolution satellite image processing is developed using OpenGIS components and real-time data processing architecture. The developed component software is composed of three major packages, which are data provide package, user interface package, and fast data processing package. The data provider package encodes and decodes diverse image/vector data formats and give identical data access methods to developers. The user interface package supports menus, toolbars, dialogs, and events to use easier. The fast data processing package follows the OpenGIS's data processing standards, which can deal with several processors as components with standard procedural functionalities.

  • PDF

Fusion Techniques Comparison of GeoEye-1 Imagery

  • Kim, Yong-Hyun;Kim, Yong-Il;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.517-529
    • /
    • 2009
  • Many satellite image fusion techniques have been developed in order to produce a high resolution multispectral (MS) image by combining a high resolution panchromatic (PAN) image and a low resolution MS image. Heretofore, most high resolution image fusion techniques have used IKONOS and QuickBird images. Recently, GeoEye-1, offering the highest resolution of any commercial imaging system, was launched. In this study, we have experimented with GeoEye-1 images in order to evaluate which fusion algorithms are suitable for these images. This paper presents compares and evaluates the efficiency of five image fusion techniques, the $\grave{a}$ trous algorithm based additive wavelet transformation (AWT) fusion techniques, the Principal Component analysis (PCA) fusion technique, Gram-Schmidt (GS) spectral sharpening, Pansharp, and the Smoothing Filter based Intensity Modulation (SFIM) fusion technique, for the fusion of a GeoEye-1 image. The results of the experiment show that the AWT fusion techniques maintain more spatial detail of the PAN image and spectral information of the MS image than other image fusion techniques. Also, the Pansharp technique maintains information of the original PAN and MS images as well as the AWT fusion technique.

Image Fusion Framework for Enhancing Spatial Resolution of Satellite Image using Structure-Texture Decomposition (구조-텍스처 분할을 이용한 위성영상 융합 프레임워크)

  • Yoo, Daehoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.21-29
    • /
    • 2019
  • This paper proposes a novel framework for image fusion of satellite imagery to enhance spatial resolution of the image via structure-texture decomposition. The resolution of the satellite imagery depends on the sensors, for example, panchromatic images have high spatial resolution but only a single gray band whereas multi-spectral images have low spatial resolution but multiple bands. To enhance the spatial resolution of low-resolution images, such as multi-spectral or infrared images, the proposed framework combines the structures from the low-resolution image and the textures from the high-resolution image. To improve the spatial quality of structural edges, the structure image from the low-resolution image is guided filtered with the structure image from the high-resolution image as the guidance image. The combination step is performed by pixel-wise addition of the filtered structure image and the texture image. Quantitative and qualitative evaluation demonstrate the proposed method preserves spectral and spatial fidelity of input images.