• 제목/요약/키워드: High-quality weather information

검색결과 62건 처리시간 0.024초

Remote Honey Bee Breeding Centre: A Case Study of Heligoland Island in Germany

  • Meyer-Rochow, V.B.;Jung, Chuleui
    • 한국양봉학회지
    • /
    • 제34권4호
    • /
    • pp.285-293
    • /
    • 2019
  • The honey bee queen shows extreme polyandry and controlling the mating partners can only be possible either by artificial insemination or having remote isolated mating locations. Here we report on the German North Sea island of Heligoland. Because of its location 60 km from the mainland, the lack of a local population of honey bees, its size of just 1.4 ㎢ and suitable weather conditions during the months of May to July, it is considered an ideal location for controlled inseminations of high-quality virgin queen bees with drones deemed genetically superior to others. Methods how to rear virgin queen bees are described and information is provided on the numbers of queen bees, their supporting workers and drone bees that are taken to the island in the mating season. The bee most commonly involved in the Heligoland mating trials has become Apis mellifera carnica strain "Baltica". In one summer, for example, 80 virgin queens (belonging to beekeepers from nine different locations in northern Germany) each with about 600 worker bees plus two drone populations of around 2,000 drones were taken by ship to Heligoland. On their return to the mainland no later than 3.5 weeks after the mating exercise, the beekeepers could register a mating success rate of 80%. This information can help operation management of the new remote mating centre of Weedo Island, Jeonbuk in Korea, which is currently under construction.

국내 작황 모니터링을 위한 무인항공기 적용방안 (Application Method of Unmanned Aerial Vehicle for Crop Monitoring in Korea)

  • 나상일;박찬원;소규호;안호용;이경도
    • 대한원격탐사학회지
    • /
    • 제34권5호
    • /
    • pp.829-846
    • /
    • 2018
  • 작황 모니터링은 농민들에게 최적의 작물 생산을 위한 농작업 관리 전략을 수립하는데 유용한 정보를 제공할 수 있다. 그러나 시료 채취에 의한 분석 등에 한정된 기존의 현장 모니터링 방법은 많은 시간과 노동력이 필요하다. 무인항공기는 고해상도 이미지를 신속하고 정기적으로 취득할 수 있는 장점이 있기 때문에 재배 면적, 생육인자, 생육이상 및 생산량 추정 등과 같은 작황 모니터링 분야에 효과적으로 활용될 수 있다. 또한, 위성과 비교하여 비행 고도가 낮아 흐린 날씨에서도 높은 화질의 영상을 수집할 수 있다. 본 연구는 작황 모니터링 분야에서의 무인항공기 활용 가능성을 검토하고 무인항공기 기반의 작황 정보 생산을 위한 적용방안을 제시하고자 하였다.

정지궤도 기상위성 자료를 활용한 강우유형별 강우량 추정연구 (A Study on the Algorithm for Estimating Rainfall According to the Rainfall Type Using Geostationary Meteorological Satellite Data)

  • 이은주;서명석
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.117-120
    • /
    • 2006
  • Heavy rainfall events are occurred exceedingly various forms by a complex interaction between synoptic, dynamic and atmospheric stability. As the results, quantitative precipitation forecast is extraordinary difficult because it happens locally in a short time and has a strong spatial and temporal variations. GOES-9 imagery data provides continuous observations of the clouds in time and space at the right resolution. In this study, an power-law type algorithm(KAE: Korea auto estimator) for estimating rainfall based on the rainfall type was developed using geostationary meteorological satellite data. GOES-9 imagery and automatic weather station(AWS) measurements data were used for the classification of rainfall types and the development of estimation algorithm. Subjective and objective classification of rainfall types using GOES-9 imagery data and AWS measurements data showed that most of heavy rainfalls are occurred by the convective and mired type. Statistical analysis between AWS rainfall and GOES-IR data according to the rainfall types showed that estimation of rainfall amount using satellite data could be possible only for the convective and mixed type rainfall. The quality of KAE in estimating the rainfall amount and rainfall area is similar or slightly superior to the National Environmental Satellite Data and Information Service's auto-estimator(NESDIS AE), especially for the multi cell convective and mixed type heavy rainfalls. Also the high estimated level is denoted on the mature stage as well as decaying stages of rainfall system.

  • PDF

Evaluation of Phase Calibration Performance with KVN

  • Jung, Dawoon;Sohn, Young-Jong;Byun, Do-Young;Jung, Taehyun
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.36.2-36.2
    • /
    • 2016
  • In mm-VLBI, the quality of observation data is largely affected by atmospheric effect. The most challenging matter is that the phase of correlator output fluctuates rapidly resulting from a variation of atmospheric propagation delay. Consequently, it is demanding to achieve high Signal-to-Noise ratio by integrating data in time domain before calibrating atmospheric delay. However, Korean VLBI Network (KVN) has a unique system to make a 4-frequency (22/43/86/129 GHz) simultaneous observation in mm-wavelength and Frequency Phase Transfer (FPT) calibration technique has effectively removed atmospheric delay in the simultaneous multi-frequency observation of the KVN. For astrometric and astrophysical studies, we evaluated the FPT performance of KVN in various observing conditions. Using the total 38 bright AGNs, we have compared atmospheric conditions such as ground-based weather information, system temperature, atmospheric delay with the calibration results of FPT at 22/43/86/129 GHz during the five experiments in 2013, and quantified its performance in terms of coherence function and Allan variance. We present the analysis result of the relation between the FPT performance and observing conditions.

  • PDF

WRF V3.3 모형을 활용한 CESM 기후 모형의 역학적 상세화 (Application of the WRF Model for Dynamical Downscaling of Climate Projections from the Community Earth System Model (CESM))

  • 서지현;심창섭;홍지연;강성대;문난경;황윤섭
    • 대기
    • /
    • 제23권3호
    • /
    • pp.347-356
    • /
    • 2013
  • The climate projection with a high spatial resolution is required for the studies on regional climate changes. The Korea Meteorological Administration (KMA) has provided downscaled RCP (Representative Concentration Pathway) scenarios over Korea with 1 km spatial resolution. If there are additional climate projections produced by dynamically downscale, the quality of impacts and vulnerability assessments of Korea would be improved with uncertainty information. This technical note intends to instruct the methods to downscale the climate projections dynamically from the Community Earth System Model (CESM) to the Weather Research and Forecast (WRF) model. In particular, here we focus on the instruction to utilize CAM2WRF, a sub-program to link output of CESM to initial and boundary condition of WRF at Linux platform. We also provide the example of the dynamically downscaled results over Korean Peninsula with 50 km spatial resolution for August, 2020. This instruction can be helpful to utilize global scale climate scenarios for studying regional climate change over Korean peninsula with further validation and uncertainty/bias analysis.

ROBOTICS AND AUTOMATION IN CONSTRUCTION INDUSTRY

  • Younus Khan;G. Chandra Sekhar Reddy;V.S.S. Kumar
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.527-532
    • /
    • 2005
  • The construction industries are facing problems of productivity, quality of work, safety, and the completion of projects in time. In construction industry a worker is exposed to hazardous environment, and has to do more physical work, effecting his health and also productivity. The automation and robotics can offer solution to many problems of the industry. In the past the major barrier to construction automation is the lack of electronic components and systems. This is solved now with the development of information technology, and the current obstacle is the high cost of automated systems, shortage of public money for R&D, and problems of acceptance. The robots employed in construction have followed the same concept as those employed in manufacturing. However, construction industry requires a different kind of robot compared to manufacturing Industry. The robots are stationery and product moves along the assembly line in manufacturing sector, but construction robots have to move about the site because buildings are stationary and of large size. The construction robots must function in adverse weather conditions, including variation in humidity, and temperature and increase the overall construction productivity rate. The major objective of the paper is to review the existing applications of building robots and to assess their implementation in building industry. A case study is considered for the implementation of robots for the painting work of the University Building at Saifabad PG College of Science, Hyderabad, India.

  • PDF

Jointly Learning of Heavy Rain Removal and Super-Resolution in Single Images

  • ;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.113-117
    • /
    • 2020
  • Images were taken under various weather such as rain, haze, snow often show low visibility, which can dramatically decrease accuracy of some tasks in computer vision: object detection, segmentation. Besides, previous work to enhance image usually downsample the image to receive consistency features but have not yet good upsample algorithm to recover original size. So, in this research, we jointly implement removal streak in heavy rain image and super resolution using a deep network. We put forth a 2-stage network: a multi-model network followed by a refinement network. The first stage using rain formula in the single image and two operation layers (addition, multiplication) removes rain streak and noise to get clean image in low resolution. The second stage uses refinement network to recover damaged background information as well as upsample, and receive high resolution image. Our method improves visual quality image, gains accuracy in human action recognition task in datasets. Extensive experiments show that our network outperforms the state of the art (SoTA) methods.

  • PDF

DEM 품질에 따른 고해상도 SAR 영상의 지형 보정 정확도 평가 (Accuracy Evaluation of Terrain Correction of High Resolution SAR Imagery with the Quality of DEM)

  • 이경엽;변영기;김윤수
    • 한국측량학회지
    • /
    • 제30권6_1호
    • /
    • pp.519-528
    • /
    • 2012
  • SAR는 기상상태와 태양고도 제약을 받지 않고 영상을 취득할 수 있는 장점을 갖지만 측면 관측 촬영방식으로 인해 고도에 의한 왜곡이 발생하여 광학영상과의 통합적 활용을 위해서는 지형 보정 작업이 필수적이다. 일반적으로 SAR 영상의 지형보정은 대상지역의 수치표고모델(Digital Elevation Model, DEM)을 사용하여 수행되기 때문에 DEM 품질이 지형보정 정확도에 미치는 영향에 대한 평가가 이루어져야 한다. 이를 위해 본 연구에서는 1:5000 수치지도로부터 제작한 DEM, LiDAR DEM, ASTER GDEM, SRTM DEM을 비교 분석하여 고해상도 SAR 영상의 지형보정에 적합한 DEM을 탐색하였다. 실험데이터로는 KOMPSAT-5호와 동일한 고해상도 X-band SAR 시스템을 장착한 TerraSAR-X와 Cosmo-SkyMed 영상을 사용하였다. 지형보정 결과 평가를 위해 동일지역의 KOMPSAT-2 정사영상과의 정량적 비교평가를 수행하였다. 실험결과 수치지도로 제작한 DEM이 가장 정확한 지형보정 결과를 보였으며 현업에서 가장 많이 활용되고 있는 SRTM DEM의 경우 고해상도 SAR 영상의 지형보정에는 부적합 하였다.

부등각사상변환을 이용한 저고도 UAV 영상의 지형보정 (Geocoding of Low Altitude UAV Imagery using Affine Transformation Model)

  • 김성삼;정재훈;김의명;유환희;손홍규
    • 대한공간정보학회지
    • /
    • 제16권4호
    • /
    • pp.79-87
    • /
    • 2008
  • 위성측량이나 기존의 항공측량에 비해 경제적이면서 기상영향을 덜 받는 저고도 고해상 영상의 취득과 항공사진측량의 많은 수요를 충족하기 위해 신속한 맵핑을 위한 UAV(Unmanned Aerial Vehicle) 기술 개발이 요구되고 있으며, 특히 효율적인 지형보정에 관한 연구가 중요한 이슈로 부각되고 있다. 그러나, 민간분야 활용을 위한 UAV의 높은 잠재력에 비해 최근까지 직접 지형보정과 같은 사진측량측면에서의 기술개발은 초기 단계에 머물고 있으며, 지속적인 연구와 추가적인 기술개발 노력이 필요하다. 본 연구에서는 최소한의 지상기준점 정보를 이용하여 간편한 부등각사상변환식과 부등각사상변환의 블록조정에 의해 자동으로 저고도 UAV 영상을 기하보정하는 기법을 제안하였으며, 상용 프로그램 처리결과와 비교를 통하여 UAV 정지영상 기하모형식으로서의 적용가능성을 평가하였다.

  • PDF

High Resolution Probabilistic Quantitative Precipitation Forecasting in Korea

  • Oh, Jai-Ho;Kim, Ok-Yeon;Yi, Han-Se;Kim, Tae-Kuk
    • 한국제4기학회지
    • /
    • 제19권2호
    • /
    • pp.74-79
    • /
    • 2005
  • Recently, several attempts have been made to provide reasonable information on unusual severe weather phenomena such as tolerant heavy rains and very wild typhoons. Quantitative precipitation forecasts and probabilistic quantitative precipitation forecasts (QPFs and PQPFs, respectively) might be one of the most promising methodologies for early warning on the flesh floods because those diagnostic precipitation models require less computational resources than fine-mesh full-dynamics non-hydrostatic mesoscale model. The diagnostic rainfall model used in this study is the named QPM(Quantitative Precipitation Model), which calculates the rainfall by considering the effect of small-scale topography which is not treated in the mesoscale model. We examine the capability of probabilistic diagnostic rainfall model in terms of how well represented the observed several rainfall events and what is the most optimistic resolution of the mesoscale model in which diagnostic rainfall model is nested. Also, we examine the integration time to provide reasonable fine-mesh rainfall information. When we apply this QPM directly to 27 km mesh meso-scale model (called as M27-Q3), it takes about 15 min. while it takes about 87 min. to get the same resolution precipitation information with full dynamic downscaling method (called M27-9-3). The quality of precipitation forecast by M27-Q3 is quite comparable with the results of M27-9-3 with reasonable threshold value for precipitation. Based on a series of examination we may conclude that the proosed QPM has a capability to provide fine-mesh rainfall information in terms of time and accuracy compared to full dynamical fine-mesh meso-scale model.

  • PDF