• Title/Summary/Keyword: High-pressure phase equilibria

Search Result 14, Processing Time 0.018 seconds

Phase Behavior of Poly(methylmethacrylate) (PMMA) in Varions Solvents at High Pressure (고압상태의 다양한 용매 내에서 Poly(methylmethacrylate) (PMMA)의 상거동)

  • Kim, Je-Il;Yoo, Ki-Pung;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.28-33
    • /
    • 2007
  • We measured cloud points of Poly(methylmethacrylate) (PMMA) in various solvents using the high-pressure variable volume view cell apparatus. The solvents used for dissolving PMMA were chlorodifluoromethane (HCFC-22), dimethylether (DME), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a) and 1,1,1,2-tetrafluoroethane (HFC-134a), and the effect of $CO_2$ concentration on the phase behavior of $PMMA+HCFC-22+CO_2$ system and $PMMA+DME+CO_2$ system was observed. PMMA was dissolved well in HCFC-22 from about 340 K, 5MPa and in DME from about 300 K, 28MPa. However, PMMA was not dissolved at all up to 423.15 K, 160MPa in the other fluorine compound such as HFC-l43a, HFC-152a and HFC-134a. PMMA+HCFC-22, $PMMA+HCFC-22+CO_2$ and PMMA+DME systems exhibit the lower critical solution temperature (LCST) behavior, however, $PMMA+DME+CO_2$ system exhibits the upper critical solution temperature (UCST) behavior. In the $CO_2$ mixture, the cloud point pressure of PMMA was increased dramatically proportional to the amount of $CO_2$ added, and from this result, it was known that $CO_2$ could be used as an antisolvent for fabricating PMMA nano-particles. And the cloud point of PMMA could be controlled by changing the concentration of $CO_2$.

  • PDF

Polymetamorphism of the Odesan Gneiss Complex in the Northeastern area of the Kyonggi Massif, Korea (경기육괴 북동부지역에 분포하는 오대산편마암복합체의 다변성작용)

  • 권용완;김형식;오창환
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.226-243
    • /
    • 1997
  • The Odesan Gneiss Complex consists of mainly migmatitic gneiss and porphyroblastic gneiss with locally intercated quartzite, amphibolite, marble and leucocratic gneiss. At least two different regional metamorphisms are recognized in the study area. Metamorphic grade of the first metamorphism increases from the K-feldspar-muscovite zone(in which biotite-muscovite-plagioclase-quartz and garnet-biotite-muscovite-K-feldspar-plagioclase-quartz assemblages occur) in the east and southwestern part of the study area to the K-feldspar-garnet zone(in which garnet-biotite-K-feldspar-plagioclase-quartz, biotite-K-feldspar-plagioclase-quartz, garnet-biotite-K-feldspar-plagioclase-sillimanite-spinel-quartz assemblages occur) in the northwestern part. Kyanite is found as inclusions in plagioclase. The second metamorphism is characterised by occurrence of cordierite. The metamorphic grade of 2nd metamorphism decreases radically from the central-western part near Gaeinsan in which cordierite-garnet-sillimanite-biotite-muscovite-quartz, cordierite-garnet-spinel-sillimanite-biotite-muscovite-quartz assemblages representing the garnet-cordierite zone are observed. The garnet-cordierite zone is surrounded by the sillimanite-cordierite zone which shows cordierite-sillimanite-biotite-plagioclase, cordierite-muscovite-biotite-plagioclase and sillimanite-muscovite-biotite-plagioclase assemblages. The peak metamorphic P-T conditions of the first metamorphism calcuted from garnet-biotite-sillimanite-K-feldspar-plagioclase-spinel assemblage are 5.4~7.4 kb and $776-789^{\circ}C$. Real P-T condition of the first metamorphism might be higher than the calcuated P-T condition according to the study based on the phase equilibria. P-T conditions calcuated from the garnet-biotite in plagioclase are 12.5kb and $650^{\circ}C$ which indicate that the P-T path of the first metamorphism had passed a high pressure condition before the peak metamorphic temperature condition. The peak metamorphic P-T conditions of the second metamorphism calcuated from garnet-biotite-cordierite-spinel-quartz assemblage are $680~750^{\circ}C$ at pressures lower than 6 kb. In the Odesan Gneiss Complex, the first metamorphism of medium pressure and high temperature had occurred after the high pressure condition and fast uplift and then the second metamorphism of low pressure condition occurred after sedimentation of the Kuryong Group.

  • PDF

Metamorphism of the Buncheon and Hongjeas Granitic Gneisses (분천과 홍제사 화강암질 편마암체의 변성작용)

  • 김형수;이종혁
    • The Journal of the Petrological Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.61-87
    • /
    • 1995
  • On the basis of lithology, the Precambrian Hongjesa Granitic Gneiss can be locally zoned into granoblastic granitic gneiss, porphyroblastic granitic gneiss, migmatitic gneiss from its center to the marginal part. There are no distinct differences in mineral assemblages by lithologic zoning, but it partly shows the change of mineral assemblage in the adjacent with migmatitic gneiss, thus mineral assemblage can be subdivided into Zone I and Zone II. In terms of mineral compositions, the characteristics of Zone I are coexisting K-feldspar+muscovite+sillimanite. The characteristics of Zone II are (1) breakdown of muscovite, (2) coexisting garnetScordierite, (3) coexisting garnet+cordierite + orthoamphibole. The Buncheon Granitic Gneiss is mainly composed of augen gneiss. In the adjacent area with Honjesa Granitic Gneisses, Buncheon Granitic Gneiss has the mineral assemblage of sillimanite+biotite+K-feldspar+(kyanite). Kyanite occurs as relict grains in the Buncheon and Hongjesa Granitic Gneissess. Kyanite shows anhedral to subhedral form and coexists with sillimanite in only one of these samples. Garnet from a migmatitic gneiss (Zone 11) has relatively high $X_{Fe}$ value in core and rim. Garnet from a porphyroblastic granitic gneiss(Zone I) has relatively homogemeous core but compositionally-zoned rim. Biotites show various colour from greenish-brown, brown to reddish brown at maximum adsorption. Also, the Ti, and Mg content in biotites increases from Zone I to Zone II. The plagioclases shows the chemical composition of $Ab_{84}An_{16}$ -$Ab_{70}An_{30}$ (oligoclase) in Zone I and $Ab_{70}An_{30}$ -$Ab_{50}An_{50}$(andesine) in Zone 11. These variations indicate that the gneisses in the study area experienced a upperamphibolite facies. The presence of kyanite as relict grains indicates that the metamorphic rocks in this area exprienced a high-temperature/medium-pressure type metamorphism, followed by high-temperaturellow-pressure metamorphism. Metamorphic P-T conditions for each gneiss estimated from various geothermobarometers and phase equilibria are 698-$729^{\circ}C$/6.3-11.3 kbar in augen gneiss, 621-$667^{\circ}C$/1.0-5.4 kbar in migmatitic gneiss, and 602-$624^{\circ}C$/1.9-3.4 kbar in porphyroblastic granitic gneiss. These data suggest that the study area was subjected to a clockwise P-T path with isothermal decompression (dP/dT=about 60 bar/$^{\circ}C$).

  • PDF

Measurement of Mutual Solubility of High-pressure Gaseous Fire Extinguishing Agents(HFCs) and Nitrogen (고압가스계 소화약제(HFCs계열)와 질소의 상호용해도 측정)

  • 임종성;박지영;이병권;김재덕;이윤용
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.26-31
    • /
    • 2002
  • Bromotrifluoromethane(halon-1301) and bromochlorodifluoromethane(halon-1211) have been widely used as a clean fire extinguishing agents due to their outstanding properties. However, production and use of halon are currently being phased out under an international agreements Montreal Protocol because of global environmental concerns and HFCs have been considered as promising alter-natives for the replacement of halon since their ozone depletion potentials are low. The vapor-liquid equilibrium data are required as important basic information in evaluating the solubility of clean fire extinguishing agents and determining their optimal compositions. In this work, we chose HFCs such as HFC-22 HFC-125, and HFC-l34a for gaseous fire extinguishing agents and nitrogen as a pressurization gas for a proper jet velocity of these agents. Phase equilibria for binary mixtures of nitrogen/HFC-22, nitrogen/HFC-125, and nitrogen/HFC-l34a were measured in the temperature range from 283.15K to 303.15K. For equilibrium measurement, we used a circulation type apparatus in which both vapor and liquid phases were continuously recirculated. The experimental data were relatively well correlated with the Peng-Robinson equation of state with Wong-Sandier mixing rules.