• Title/Summary/Keyword: High-pressure pH

Search Result 472, Processing Time 0.026 seconds

Effects of Ultra-high Pressure Homogenization on the Emulsifying Properties of Whey Protein Isolates under Various pH

  • Lee, Sang-Ho;Subirade, Muriel;Paquin, Paul
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.324-329
    • /
    • 2008
  • The effect of ultra-high pressure homogenization on the emulsifying properties of whey protein was investigated in a model emulsion made with whey protein isolate and soya oil under various pH. The emulsifying properties, the average diameter of the oil droplets ($d_{vs}$), and the protein load, were measured for each emulsion produced at different homogenization pressures (50 to 200 MPa) and pH values (4.6 to 8.0). According to the results of variance analysis and response surface, the pH had more influence on oil droplet size and protein load than homogenization pressure. The model equations, which were obtained by response surface analysis, show that pH and homogenization pressure had the major effect on oil droplet size and protein load. Higher homogenization pressure decreased the average droplet size and the protein load. Homogenization at high pressure, as opposed to low pressure, causes no overprocessing, but the effect was pH-dependent. The average diameter of the oil droplets increased slightly by decreasing the pH from 8.0 to 6.5 and then increased dramatically toward the isoelectric point of whey protein (i.e., at pH 4.6). Moreover associated droplets were found at acidic pH and their size was increased at high temperature.

Method for Measuring pH and Alkalinity of High-Pressure Fluid Samples : Evaluation through Artificial Samples (고압 유체 시료의 pH 및 알칼리도 측정 방법 : 가상 시료를 활용한 실용성 평가)

  • Minseok Song;Soohyeon, Moon;Gitak Chae;Jun-Hwan Bang
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • As part of monitoring technology aimed at verifying the stability of CO2 geologic storage and mitigating concerns about leakage, a method for measuring the pH and alkalinity of high-pressure fluid samples was established to obtain practical technology. pH measurement for high-pressure samples utilized a high-pressure pH electrode, and alkalinity was measured using the Gran titration method for samples collected with a piston cylinder sampler (PCS). Experimental samples, referencing CO2-rich water and CO2 geologic storage studies, were prepared in the laboratory. The PCS controls the piston, preventing CO2 degassing and maintaining fluid pressure, allowing mixing with KOH to fix dissolved CO2. Results showed a 6.1% average error in high-pressure pH measurement. PCS use for sample collection maintained pressure, preventing CO2 degassing. However, PCS-collected sample alkalinity measurements had larger errors than non-PCS measurements, limiting PCS practicality in monitoring field settings. Nevertheless, PCS could find utility in preprocessing for carbon isotope analysis and other applications. This research not only contributes to the field of CCS monitoring but also suggests potential applications in studies related to natural analogs of CCS, CO2-rock interaction experiments, core flooding experiments, and beyond.

Effect of High Hydrostatic Pressure on the Quality of Chinese Cabbage Kimchi (초고압 처리가 배추김치의 품질특성에 미치는 영향)

  • Kim, Dong-Won;Park, Seok-Jun;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.5
    • /
    • pp.545-550
    • /
    • 2001
  • Effects of high hydrostatic pressure on pH, titratable acidity, color, hardness and microorganisms of Chinese Cabbage Kimchi were investigated. Kimchi was pressurized at $200{\sim}600$ MPa for 5 min. There were no significant differences in color and hardness between control and pressurized Kimchi (p>0.05). Total aerobes and lactic acid bacteria were effectively inactivated by high hydrostatic pressure above 400 MPa. Changes in pH, titratable acidity, color, hardness and microbial counts for 4 weeks storage of Kimchi were investigated Kimchi was pressurized at 400 MPa for 5 min and stored at $4^{\circ}C$. The pH of control decreased to 3.94 but pressurized Kimchi maintained its initial pH value throughout the storage. The color of control showed significantly low values compared with pressureized Kimchi (p<0.05), but hardness was not significantly changed (p>0.05). Total aerobes and lactic acid bacteria in the control were reduced from the initial value of $10^8{\sim}10^9$ CFU/mL to $10^6$CFU/mL after 4 weeks storage. Whereas microbial counts in pressurized Kimchi was maintained about $10^3{\sim}10^4$ CFU/mL during storage.

  • PDF

The Effects of High Pressure and Various Binders on the Physico-chemical Properties of Restructured Pork Meat

  • Hong, Geun-Pyo;Park, Sung-Hee;Kim, Jee-Yeon;Min, Sang-Gi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1484-1489
    • /
    • 2006
  • This study was carried out to investigate the effect of high pressure and the addition of non-meat proteins on the physico-chemical and binding properties of restructured pork. Pressurizations were carried out at up to 200 MPa and non-meat proteins used as a binder were isolated soy protein (ISP), sodium caseinate (SC), whey protein concentrate (WPC) and egg white powder (EWP). The pH values of all treatments were affected by the level of pressure. $L^*$-value of all treatments increased significantly (p<0.05), while both $a^*$-value and $b^*$-value of all treatments showed a significant decrease (p<0.05) with increasing pressure level. Binders could contribute only additive effects on both pH and color of the treatments. It was found that high pressure improved the water binding capacities and binding strength of the treatments. Binders also improved the binding strength of restructured pork. However, SC and WPC had no effect on water binding properties under high pressure. These results indicate that the application of high pressure had more significant effect on restructuring meat than binders.

Effects of High Hydrostatic Pressure and pH on the Reduction of Garlic Off-flavor (초고압처리 시간과 pH 변화에 의한 마늘의 이취성분 저감화)

  • Lim, Chae-Lan;Hong, Eun-Jeung;Noh, Bong-Soo;Choi, Won-Seok
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.533-540
    • /
    • 2010
  • Effects of pH (1.8-10.2) and time (56 sec-15 min 4 sec) at high hydrostatic pressure (500 MPa) on the reduction of volatile compounds in garlic were studied. Volatile components of garlic were obtained from the headspace, analyzed, and identified by gas chromatography (GC)-mass spectrometry and an electronic nose. Nineteen sulfur compounds were identified as major compounds in garlic, and furan, aldehydes, alcohols, and ketones were also detected. Off-flavor compounds were more effectively reduced under strong acidic conditions. As the residence time at 500 MPa increased from 56 sec to 15 min 4 sec, the total amount of volatile compounds decreased significantly. The total amount of sulfur compounds decreased about 70% compared to those of raw garlic when the garlic was soaked in buffer (pH 6.0) and treated at 500 MPa for 15 min 4 sec. A principal component analysis showed that the off-flavors of garlic were reduced by the operating time of high hydrostatic pressure as well as pH treatment. The correlation coefficient of the results between GC and the electronic nose analysis was 0.9620. Therefore, pH and high hydrostatic pressure treatment could be used as an efficient method for reducing of garlic off-flavor.

A Study on Landfill Leachate Treatment by Reduced Pressure Evaporation. (감압증발법을 이용한 매립장 침출수 처리에 관한 연구)

  • 문추연;은종극;이태호
    • Journal of environmental and Sanitary engineering
    • /
    • v.12 no.3
    • /
    • pp.73-79
    • /
    • 1997
  • This research was intended as an investigation of applying Reduced Pressure Evaporation as efficient treatment method for landfill leachate. According to the variance of time, temperature, pressure and pH in experiments, the properties of leachate treatment are follows. The removal efficiencies of COD, NH$_{3}$-N, TOC, Conductivity and SS on the basis of reaction time was 96.4%-97.5%, -1.4%-53.7%, 81.7%-89.0%, 92.0%-95.3% and 99.86%-99.97%, respectively. When the pH of Influent was 7.5, the pH of effluent was increased to 10-11 with time elapse. It is concluded that the orgin of pH increase may be ammonia. When the properties of concentrate were investigated at the concentration ratio 90%(V/V), concentration difficiency represented in the ratio of experimental value/calculated value had following orders ; COD>TOC>NH$_{3}$-N>Conductivity>SS. Concentrate had good precipitation because of additive thermal treatment in the process. When evaporation experiments with pH adjustment of 4.0, 6.0, 7.5, 9.0 and 10.0 were performed ; Acidic evaporation experiments(pH 4.0, 6.0) showed low removal efficiency(81.6, 87.6%) of COD and high removal efficiency (97.5%. 84.6%) of NH$_{3}$-N at initial evaporation. Basic evaporation(pH 9.0, 10.0) showed high removal efficiency (97.2%, 98.9%) of COD and very low removal efficiency (-7.4%, -27.2%) of NH$_{3}$-N at initial evaporation.

  • PDF

Effect of $H_2S$ Partial Pressure and pH of Test Solution on Hydrogen Induced Cracking of High Strength Low Alloy Steels

  • Kim, Wan Keun;Koh, Seong Ung;Kim, Kyoo Young;Yang, Boo Young;Jung, Hwan Kyo
    • Corrosion Science and Technology
    • /
    • v.4 no.6
    • /
    • pp.236-241
    • /
    • 2005
  • Hydrogen induced cracking (HIC) is one of the hydrogen degradation phenomena of linepipe steels caused by $H_2S$ gas in the crude oil or natural gas. However, NACE TM0284-96 standard HIC test method is hard to satisfy the steel requirements for sour service application since it uses more severe environmental conditions than actual conditions. Therefore, in order to use steels effectively, it is required to evaluate HIC resistance of steels in the practical range of environmental severity. In this study, HIC resistance of two high strength low alloy (HSLA) steels being used as line pipe steels was evaluated in various test solutions with different $H_2S$ pressures and pH values. The results showed that the key parameter affecting crack area ratio (CAR) is $H_2S$ partial pressure of test solution when the pH value of test solution is not over 4. Hydrogen diffusivity was not a constant value, but it was rather affected by the hydrogen ion concentration (pH value) in the solution.

Kinetic Studies for the Reactions of Pyridine with Benzoylchlorides under High Pressure and High Vacuum (고압 및 고진공에서의 피리딘과 벤조일클로라이드류의 반응에 관한 속도론적 연구)

  • Kim, Se-Kyong
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.3
    • /
    • pp.254-260
    • /
    • 2004
  • The reaction rates of para-substituted benzoyl chlorides ($p-CH_3$, p-H, $p-NO_2$) with pyridine have been measured employing the conductometry method in acetonitrile. The pseudo first-order and second-order rate constants were determined at various pressures and temperatures. The activation parameters (${\Delta}V{\ddagger},\;{\Delta}{\beta}{\ddagger},\;{\Delta}H{\ddagger},\;{\Delta}S{\ddagger},\;{\Delta}G{\ddagger}$) and the Hammett ${\rho}$-values are determined from the values of rate constant. The values of ${\Delta}V{\ddagger},\;{\Delta}{\beta}{\ddagger}\;and\;{\Delta}S{\ddagger}$ are all negative. The Hammett ${\rho}$-values are positive for the substrate (${\rho}_Y$) over the given pressure range. The results of kinetic studies, for the pressure and substituent changes, show that these reactions are proceeded by a typical $SN_2$reaction mechanism and its bond formation is favored with elevating pressure.

Synthesis and Characterization of High Surface Area of Zirconia: Effect of pH (고비표면적 지르코니움 산화물의 제조 및 특성 분석: pH 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.1
    • /
    • pp.133-141
    • /
    • 2019
  • High specific surface area zirconia with acid-basic property was synthesized by precipitation using reflux method or hydrothermal synthesis method using ammonium hydroxide solution as precipitant in the range of pH of Zr solution from 2 to 10. The prepared zirconia was characterized by the nitrogen adsorption, X-ray diffraction (XRD), isopropanol temperature programmed desorption (IPA-TPD), scanning electron microscopy and X-ray photoelectron spectroscopy, and the catalytic activity in the IPA decomposition reaction was correlated with the acid-basic properties. When using reflux method, high pH of Zr solution was required to obtain high fraction of tetragonal zirconia, and pure tetragonal zirconia was possible at pH 9 or higher. High pH was required to obtain high specific surface area zirconia, and the hydrous zirconia synthesized at pH 10 had high specific surface area zirconia of $260m^2g^{-1}$ even after calcination at $600^{\circ}C$. However, hydrothermal synthesis with high pressure under the same conditions resulted in very low specific surface area below $40m^2g^{-1}$ and monoclinic phase zirconia was synthesized. High pH of the solution was required to obtain high specific surface area tetragonal phase zirconia. In hydrothermal synthesis requiring high pressure, monoclinic zirconia was produced irrespective of the pH of the solution, and the specific surface area was relatively low. Zirconia with high specific surface area and tetragonal phase was predominantly acidic compared to basicity and only propylene, which was observed as selective dehydration reaction in IPA decomposition reaction, was produced.

Isotope Selectivity in the CO$_2$Laser Induced Decomposition of Trichloroethylene-H and Trichloroethylene-D

  • Koo Sang Man;Chun Byung Soo;Choo Kwang Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.96-101
    • /
    • 1989
  • The infrared multiphoton decomposition of trichloroethylene-H(TCE-H) and trichloroehtylene-D(TCE-D) was studied by using the high power $CO_2$ laser. The pressure dependence of TCE-H decomposition showed that the HCl elimination channel to form ClC ≡ CCl was the major step at high pressures, while the HC ≡ CCl formation step became important at low pressures. $Cl_2C$ = CHCl ${\rightarrow}$ (high pressure) ClC ${\equiv}$ CCl + HCl ${\rightarrow}$ (low pressure) HC ${\equiv}$ CCl + 2Cl${\cdot}$($Cl_2$) The IRMPD of TCE-H and TCE-D mixtures with 10P(20) laser line showed that optimum conditions of large isotope selectivity were the low system pressures and high laser powers. The experimentally observed dependence of the branching ratios on the pressure and laser fluence, and the isotope selectivity coefficients were quantitatively explained by using the modified energy grained master equations (EGME) model.