• Title/Summary/Keyword: High-pressure experiment

Search Result 993, Processing Time 0.035 seconds

Rapid and massive throughput analysis of a constant volume high-pressure gas injection system

  • Ren, Xiaoli;Zhai, Jia;Wang, Jihong;Ren, Ge
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.908-914
    • /
    • 2019
  • Fusion power shutdown system (FPSS) is a safety system to stop plasma in case of accidents or incidents. The gas injection system for the FPSS presented in this work is designed to research the flow development in a closed system. As the efficiency of the system is a crucial property, plenty of experiments are executed to get optimum parameters. In this system, the flow is driven by the pressure difference between a gas storage tank and a vacuum vessel with a source pressure. The idea is based on a constant volume system without extra source gases to guarantee rapid response and high throughput. Among them, valves and gas species are studied because their properties could influence the velocity of the fluid field. Then source pressures and volumes are emphasized to investigate the volume flow rate of the injection. The source pressure has a considerable effect on the injected volume. From the data, proper parameters are extracted to achieve the best performance of the FPSS. Finally, experimental results are used as a quantitative benchmark for simulations which can add our understanding of the inner gas flow in the pipeline. In generally, there is a good consistency and the obtained correlations will be applied in further study and design for the FPSS.

CFD Analysis for Steam Jet Impingement Evaluation (증기제트 충돌하중 평가를 위한 CFD 해석)

  • Choi, Choengryul;Oh, Se-Hong;Choi, Dae Kyung;Kim, Won Tae;Chang, Yoon-Suk;Kim, Seung Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Since, in case of high energy piping, steam jets ejected from the rupture zone may cause damage to nearby structure, it is necessary to design it into consideration of nuclear power plant design. For the existing nuclear power plants, the ANSI / ANS 58.2 technical standard for high-energy pipe rupture was used. However, the US Nuclear Regulatory Commission (USNRC) and academia recently have pointed out the non-conservativeness of existing high energy pipe fracture evaluation methods. Therefore, it is necessary to develop a highly reliable evaluation methodology to evaluate the behavior of steam jet ejected during high energy pipe rupture and the effect of steam jet on peripheral devices and structures. In this study, we develop a method for analyzing the impact load of a jet by high energy pipe rupture, and plan to carry out an experiment to verify the evaluation methodology. In this paper, the basic data required for the design of the jet impact load experiment equipment under construction, 1) the load change according to the jet distance, 2) the load change according to the jet collision angle, 3) the load variation according to structure diameter, and 4) the load variation depending on the jet impact position, are numerically obtained using the developed steam jet analysis technique.

Measurement of Equilibrium Moisture Content of Wood at High Temperatures and Vapor Pressures (고온고압에서의 목재 평형함수율 측정)

  • Lee, Weon-Hee;Abe, Hisashi;Kuroda, Naohiro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.1-5
    • /
    • 1998
  • In this study, it was examined the method to estimate equilibrium moisture content(EMC) at high vapor pressures and high temperatures above $100^{\circ}C$. The material used for the experiment was Sugi(Cryptomeria japonica). EMC was investigated at temperatures ranging from $100^{\circ}C$ to $160^{\circ}C$ and under saturated vapor pressures above 1 atm. The correlation between temperatures and vapor pressures have a good agreement with those observed by thermocouple and pressure gauge in the air state of autoclave, respectively. A sensitivity of quartz spring was 65mm/g. Moisture content(MC)s calculated from the quartz spring elongation by vapor sorption showed a good agreement with MCs by oven-dried method. Using this system, it was found that EMC at high vapor pressures and high temperatures above $100^{\circ}C$ were higher than EMC of wood in 1 atm pressure conditions. With this system, therefore, it was concluded that the EMCs of wood and wood-based materials at high temperatures were able to be evaluated.

  • PDF

Field Experiment on Influence of Stack Effect to Pressure Differential System for Smoke Control (연돌효과가 급기가압 제연시스템에 미치는 영향에 대한 현장실험)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.22 no.3
    • /
    • pp.194-200
    • /
    • 2008
  • In order to design and operate successfully the pressure differential system for smoke control which uses difference of pressure between compartments of building, architectural factors affecting the pressure field of building should be examined and the stack effect is one of the important factors. The field experiments on pressure field in two buildings of 21 stories and 31 stories in summer and winter season with regard to on/off condition of the pressure differential system are carried out to evaluate the influence of stack effect to evacuation and smoke management of high-rise building. In winter season when the stack effect increases, as the pressure differential system starts to operate, the pressure in upper stair rises largely due to the combination effect of the air infiltration from lobby to stair and the stack effect.

Optimal Design of the Safety Valve by Response Surface Method (반응표면법을 이용한 안전밸브의 최적화)

  • Lee, Sang-Woo;Shin, Dae-Young;Byun, Cheol-Woong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.551-556
    • /
    • 2007
  • High pressure storage of the agent gas in fire suppression system was composed of tank, main valve and safety valve, which prevents the fracture of the high pressure storage. The safety valve has circular thin plate as fracture plate that was destroyed over fracture pressure. When inner pressure of the storage is reached the fracture pressure, the safety valve discharges gas and degrades simultaneously the inner pressure of the storage. There are design variables such as flow path diameter, inner diameter of the plastic packing ring, thickness of plate and fillet radius. In this variables, thickness of plate is set to be a value of 0.2mm. The main effect of variables on the inner pressure, has been decided using factorial design and statistical analysis. Therefore, the relation of variables are expressed by regression equation. It is disclosed results that the difference of fracture pressures between the equation and experiment has $2{\sim}5%$. Finally, using response surface method, the optimal design of the safety valve could be decided with safety pressure of 25MPa, where the fracture occurs on circular thin plate.

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

An Experimental Study for the Performance Test of a Ballistic Range Simulator (Ballistic Range Simulator의 성능평가를 위한 실험적 연구)

  • Kang, Hyun-Goo;Rajesh, G.;Lee, Jung-Min;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.367-370
    • /
    • 2006
  • The ballistic range has long been employed in a variety of engineering fields such as high-velocity impact engineering, projectile aerodynamics, creation of new materials, etc, since it can create an extremely high-pressure state in very short time. Two-stage light gas gun is being employed most extensively. The present experimental study has been conducted to develop a new type of ballistic range which can easily perform a projectile simulation. The ballistic range consists of a high-pressure tube, piston, pump tube, shock tube and launch tube. The experiment is conducted to find out the dependence of various parameters on the projectile velocity. The pressure in high-pressure tube, pressure of diaphragm rupture and projectile mass are varied to obtain various projectile velocities. This study also addresses the effect of the presence of a shock tube located between the pump tube and launch tube on system study. The experimental results are compared with those obtained through an author's theoretical study.

  • PDF

Study on Measuring the Performance of an Air Tool Operating at 100,000 RPM Class (100,000 RPM급으로 회전하는 에어공구의 성능측정에 관한 연구)

  • Cho, Soo-Yong;Kim, Eun-Jong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM in an unloaded state with very low torque. A 551 kPa in gauge pressure is supply to the inlet of an air tool. An experimental apparatus is developed as a friction type dynamometer. Inlet total pressure, air flow rate, rotational speed and operating force are measured simultaneously. Torque, output power and specific output power are obtained with different rotational speeds. Those are compared with the experimental results which were obtained by a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000 RPM. In order to reduce the rotational speed, a reduction gear is applied between the air tool and the commercial dynamometer. Torque and power obtained by the commercial dynamometer show $55\%$ lower than those obtained by the developed friction type dynamometer, because the mass is added to the rotor of air tool for the braking system of the commercial dynamometer and power loss is generated by the reduction gear. From the compared results, the friction type dynamometer should be applied for measuring the performance of the air tool operating at low torque and high RPM.

An Investigation into the effect of friction in the split hopkinson pressure bar (SHPB) test by numerical experiments (수치해석을 이용한 SHPB 시험의 마찰영향 분석)

  • Cha, Sung-Hoon;Shin, Myoung-Soo;Shin, Hyun-Ho;Kim, Jong-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.204-209
    • /
    • 2008
  • The interest in the mechanical behavior of materials at high strain rates has increased in recent years, and by now it is well known that mechanical properties can be strongly influenced by the speed of applied load. The split Hopkinson pressure bar (SHPB) has been widely used to determine mechanical properties of materials at high loading rates. However, to ensure test reliability, measurement error source must be accounted for and eliminated. During experiment, the specimens were located between the incident and the transmit bar. The presence of contact frictions between the test bars and specimen may cause errors. In this work, numerical experiments were carried out to investigate the effect of friction on test results. In SHPB test, the measured stress by the transmitted bar is assumed to be flow stress of the test specimen. Through the numerical experiments, however, it is shown that the measured stress by the transmit bar is axial stress components. When, the contact surface is frictionless, the flow stress and the axial stress of the specimen are about the same. When the contact surface is not frictionless, however, the flow stress and the axial stress are not the same anymore. Therefore, the measured stress by the transmitted bar is not flow stress. The effect of friction on the difference between flow stress and axial stress is investigated.

  • PDF

Methods of Knock Signal Analysis in a S.I. Engine (4 기통 스파크 점화 기관의 노킹 신호 해석 방법)

  • Kim, K.W.;Chun, K.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.12-21
    • /
    • 1993
  • In recent years, high efficiency, high performance, and low pollutant emmision engines have been developed. Knock phenomenon has drawn interests because it became an hinderance to engine power and efficiency increase through higher compression ratio. Knock phenomenon is an abnormal combustion originated from autoignition of unburned gas in the end-gas region during the later stage of combustion process and accompanied a high pitched metallic noise. And this phenomenon is characterized by knock occurrence percentage, knock occurrence angle and knock intensity. A four cylinder spark ignition engine is used in our experiment, and its combustion chamber pressure is measured at various engine speeds, ignition timing. The data are analyzed by numerous methods in order to select the optimum methods and to achieve better understanding of knock characteristics. Methods using band-pass filter, third derivative and step method are shown to be the most suitable, while methods using frequency analysis are shown to be unsuitable. Because step method only uses signals above threshold value during knocking condition, pressure signal analyses with this method show good signal-to-noise ratio.

  • PDF