• Title/Summary/Keyword: High-precision magnetic levitation transport system

Search Result 2, Processing Time 0.017 seconds

Development of Levitation Control for High Accuracy Magnetic Levitation Transport System (초정밀 자기부상 이송장치의 부상제어기 개발)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Lim, Jaewon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.557-561
    • /
    • 2016
  • Recently, in the manufacturing process of flat panel displays, mass production methods of inline system has been emerged. In particular the next generation OLED display manufacturing process, horizontal inline evaporation process has been tried. It is important for the success of OLED inline evaporation process to develop a magnetic levitation transport system capable of transferring a carrier equipped with a mother glass with high accuracy without any physical contact along the rail under vacuum condition. In the case of existing wheel-based transfer system, it is not suitable for OLED evaporation process requiring high cleanliness. On the other hand, the magnetic levitation transport system has an advantage that it does not generate any dust and it is possible to achieve high-precision control because there are not non-linear factors such as friction force. In this paper, we introduce the high-precision magnetic levitation transport system, which is currently under development, for OLED evaporation process.

A Study on the Control and Estimation of Gap Sensor Offset in High-Precision Magnetic Levitation Transport System (초정밀 자기부상 물류 이송장치의 제어 및 공극 센서 오프셋 추정 연구)

  • Kim, Min;Kim, Chang-Hyun;Ha, Chang-Wan;Won, Mooncheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.87-95
    • /
    • 2018
  • The high-precision magnetic levitation transport system is a transport device applying the principle of magnetic levitation. So it is preferable for manufactory process of semiconductor and display industries. In this system, the gap sensors are arranged discontinuously and turned on or off when the tray moves in the running direction. Therefore, precise gap data is important for precise control of the carrier. However, a slight error occurs in the process of installing the gap sensor. So, in this paper, we introduce the high-precision magnetic levitation transport system for OLED evaporation process. Also, we propose a strategy for stable flight control and an offset algorithm for tracking installation errors transport system. The performances of the proposed algorithm are validated through simulation.