• Title/Summary/Keyword: High-precision Equipment

Search Result 296, Processing Time 0.029 seconds

The Noise Reduction Effect by the Enclosure of Gas Turbines (가스터빈 차폐막의 소음 저감효과에 관한 연구)

  • Park, Dae Hun;Shin, Yoo In;Park, Sung Gyu;Kim, Kang Il;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.4
    • /
    • pp.287-292
    • /
    • 2017
  • A gas turbine is the main equipment used in a combined heat and power plant. It generates a high sound pressure noise level. To reduce the noise level, an enclosure is installed around the turbine. The sound insulation performance of the enclosure affects the amount of external noise reduction. In this study, a sound transmission loss analysis is performed using the boundary element method to predict sound insulation performance according to the numbers and shapes of the supporter. Radiated noise analysis is also performed for the main external points of the enclosure using ray-acoustics. The results of these analyses are presented and a design plan is proposed that reduces the sound pressure noise level of the enclosure.

Estimation on the effect of design variables for sealing performance of the dust seal using finite element simulation (유한요소해석을 이용한 더스트 씰 밀봉성에 대한 설계변수의 영향평가)

  • Lee K.O.;Lee S.U.;Huh Y.M.;Kang S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.123-124
    • /
    • 2006
  • Usually, hydraulic cylinder is widely used as the actuator in the equipment of construction machines, airplane and military machines. In case of these devices, due to use under severe environment such as water, $SiO^2$ and dust, etc. seal which has high packing ability and long service life has been required. These characteristics are largely influenced by material and geometries of seal such as approach angle, withdrawal angle and interference. Recently, many a study about seal material has been performed so that many materials have been developed. But the concrete studies including the relationships between geometry of seal and sealing performance have hardly been performed yet. Therefore, in this study, we predicted the deformation behavior and contact normal distribution of dust seal with the variation of geometries of seal lip using finite element analysis. And based on the results of analyses, we discussed the effects of the design variables fur sealing performance of the dust seal.

  • PDF

Estimation Study on the Wheel/Rail Adhesion Coefficient of Railway Vehicles Using the Scaled Adhesion Tester (축소 점착시험기를 이용한 휠/레일의 점착계수 추정에 관한 연구)

  • Kim, Min Soo;Hee Kim, Kyung;Kwon, Seok Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.7
    • /
    • pp.603-609
    • /
    • 2015
  • Railway vehicles driven by wheels obtain force required for propulsion and braking by adhesive force between wheels and rails, this adhesive force is determined by multiplying adhesion coefficient of the friction surface by the applied axle load. Because the adhesion coefficient has a peak at certain slip velocity, it is important to determine the maximum values of the friction coefficient on the contact area. But this adhesive phenomenon is not clearly examined or analyzed. Thus we have developed new test procedure using the scaled adhesion test-bench for analyzing of the adhesion coefficient between wheel and rail. This adhesion test equipment is an experimental device that contacts mutually with twin disc which are equivalent to wheels and rails of railway vehicles.

A Laterally Driven Electromagnetic Microoptical Switch Using Lorentz force (로렌츠 힘을 이용한 평면구동형 마이크로 광스위치)

  • Han, Jeong-Sam;Ko, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.195-201
    • /
    • 2005
  • A laterally driven electromagnetic microactuator (LaDEM) is presented, and a micro-optical switch is designed and fabricated as a possible application. LaDEM provides parallel actuation of the microactuator to the silicon substrate surface (in-plane mode) by the Lorentz force. Poly-silicon-on-insulator (Poly-SOI) wafers and a reactive ion etching (RIE) process were used to fabricate high-aspect-ratio vertical microstructures, which allowed the equipment of a vertical micro mirror. A fabricated arch-shaped leaf spring has a thickness of $1.8{\mu}m$, width of $16{\mu}m$, and length of $800{\mu}m$. The resistance of the fabricated structure fer the optical switch was approximately 5$\Omega$. The deflection of the leaf springs increases linearly up to about 400 mA and then it demonstrates a buckling behavior around the current value. Owing to this nonlinear phenomenon, a large displacement of $60{\mu}m$ could be measured at 566 mA. The displacement-load relation and some dynamic characteristics are analyzed using the finite element simulations.

Design of a Laser Welding Machine for the Precision Improvement (용접 정밀도 향상을 위한 레이저 용접기의 구조개선)

  • Ro, Seung-Hoon;Jeong, Pyeung-Soo;An, Jae-Woo;Kang, Hee-Tae;Lee, Tae-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.4
    • /
    • pp.197-203
    • /
    • 2010
  • Laser welding is widely used for precision welding because of superior mechanical properties and high productivity. Generally the accuracy of the welding is determined by the distribution of the bead which is affected by the structural vibrations of the equipment. This study was originated to stabilize a laser welding machine to minimize the bead distribution for the precise joining. The structural properties of the laser welding machine have been investigated to analyze the major factors of the vibrations to cause the bead distribution. The ideas for the design improvement have been applied to the simulation model to identify the effects and further to achieve the stability design and to minimize the bead distribution. The result shows that a few simple design alterations can substantially suppress the structural vibrations and improve the welding accuracy. The procedure used for this study can also be applied to similar welding equipments for improving the structural stability and the welding accuracy.

  • PDF

A Study on the Thermal Characteristics of Spindle for the Spinning Machine (스피닝 머신용 대형주축의 열특성에 관한 연구)

  • Jeong D.S.;Kim S.T.;Choi D.B.;Ye S.B.;Seol S.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.555-559
    • /
    • 2005
  • Spinning process is a chipless metal forming method for axis-symmetric parts, which is more economical, efficient and versatile method for producing parts than other sheet metal forming process such as stamping or deep drawing. The large-sized spindle for spinning machine is the equipment to ferm a high-pressure vessel into the demanded shape. The important problem in the spindle system fur spinning machines is to reduce and minimize the thermal effect by motor and bearings. In this study, the effect of heat generation of bearings for the large-sized spindle is considered. Temperature distribution and thermal displacement of the spindle system for spinning machine can be analyzed by using the finite element method. The numerical results are compared with the measured data. The results show that temperature distribution and thermal displacement can be reasonably estimated by using the finite element method and the three dimensional model.

  • PDF

A Study on the Safety Estimation of Low Pressure Torsion mounted Turbine Blade (비틀림 마운트형 저압 터빈 블레이드의 안전성 평가에 관한 연구)

  • 홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.149-156
    • /
    • 2003
  • The estimation of fatigue limit for the component with complicated shape is difficult than of standard fatigue specimen, due to complex test equipment. So, we substitute maximum principle stress from FEM results for fatigue limit diagram made by standard fatigue specimen. Then we can estimate endurance safety of component with high trust. The static stress analysis, the nonlinear contact stress analysis and the model analysis for turbine blade is performed by ANSYS ver. 5.6. the comparison of maximum static stress around hole with maximum contact stress between pun and hole can make the cause of fracture for turbine blade clear. The difference of fatigue limit between fatigue test by standard specimen and in-service mechanical components is due to surface roughness and machining condition etc. In in-service mechanical components, Goodman diagram has to consider surface roughness for failure analysis. To find fracture mechanism of torison-mounted blade in nuclear plant. This study performs the static stress, the nonlinear contact stress and the modal analysis on torison-mounted blade with finite element method and makes the estimation for safety of turbine blade.

A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool (소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구)

  • 이재하;박성령;양승한;이영문
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.

Joint FrFT-FFT basis compressed sensing and adaptive iterative optimization for countering suppressive jamming

  • Zhao, Yang;Shang, Chaoxuan;Han, Zhuangzhi;Yin, Yuanwei;Han, Ning;Xie, Hui
    • ETRI Journal
    • /
    • v.41 no.3
    • /
    • pp.316-325
    • /
    • 2019
  • Accurate suppressive jamming is a prominent problem faced by radar equipment. It is difficult to solve signal detection problems for extremely low signal to noise ratios using traditional signal processing methods. In this study, a joint sensing dictionary based compressed sensing and adaptive iterative optimization algorithm is proposed to counter suppressive jamming in information domain. Prior information of the linear frequency modulation (LFM) and suppressive jamming signals are fully used by constructing a joint sensing dictionary. The jamming sensing dictionary is further adaptively optimized to perfectly match actual jamming signals. Finally, through the precise reconstruction of the jamming signal, high detection precision of the original LFM signal is realized. The construction of sensing dictionary adopts the Pei type fast fractional Fourier decomposition method, which serves as an efficient basis for the LFM signal. The proposed adaptive iterative optimization algorithm can solve grid mismatch problems brought on by undetermined signals and quickly achieve higher detection precision. The simulation results clearly show the effectiveness of the method.

Prediction and Evaluation on Inequality Shortening and Long-term Deflection of High-rise Flat Plate Structure using 3D Finite Element Analysis (3차원 유한요소해석을 이용한 고층 무량판 슬래브 구조물의 부등축소량 및 장기처짐 예측 평가)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.159-160
    • /
    • 2020
  • Flat plate structures are designed in the form of long span due to the development of construction materials and the improvement of construction technology. However, a high-rise structure of a flat plate of 50 less floors is constructed without detailed review of the inequality shortening, long-term deflection of the slab, and cracks. Therefore, it is possible to examine the case of defects in the structure due to deformation and damage of non-structures such as crack and leak, deflection of the door frame, and deformation of equipment ducts. In this study, it is a high-rise structure, and the inequality shortening and long-term deflection of the slab of the flat plate structure were evaluated through finite element analysis, and it was confirmed that prior precision analysis and correction during construction is necessary.

  • PDF