• 제목/요약/키워드: High-power transformer

검색결과 1,043건 처리시간 0.026초

플라나변압기와 SiC 기반의 전기자동차용 3kW 고전력밀도 DC-DC 컨버터 개발 (Development of Planar Transformer and SiC Based 3 kW High Power Density DC-DC Converter for Electric Vehicles)

  • 김상진;석채영;라마단;최세완;유병우;박상훈
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.112-119
    • /
    • 2021
  • This study proposes a design method of high-power-density and high-efficiency low-voltage DC-DC converters using SiC MOSFET and the optimized planar transformer design procedure based on the figure-of-merit. The secondary rectifying circuit of the phase-shifted full-bridge converter is compared to achieve high power density and high efficiency, and the phase-shifted full bridge converter with a current-doubler rectifier is selected. The planar transformer is designed by the proposed optimized design procedure and verified by FEA simulation. To validate the proposed design method, experimental results from a 3 kW prototype are provided. The prototype achieved 95.28% maximum efficiency and a power density of 2.98 kW/L.

Sinewave-PWM ZVS Inverter using High-Frequency Transformer for Utility AC Voltage Link

  • Chandhaket S.;Ogura K.;Konishi Y.;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.511-515
    • /
    • 2003
  • This paper presents a novel prototype of the utility-interfaced sinusoidal pulse width modulated (SPWM) inverter using the high-frequency flyback transformer fur the small-scale solar photo-voltaic power conditioner (1kW - 4kW). The proposed SPWM power conditioner circuit with a high-frequency link has a function of electrical isolation, which is vital fur solar photovoltaic power conditioner systems with the viewpoint of safety and convenience. The discontinuous conduction mode (DCM) operation of the flyback transformer is also maintained to simplify the topology of the inverter circuit and control scheme. First, the operating principle of the proposed circuit is described far the understanding of the circuit parameters establishment. Then, the digitally constructed SPWM control scheme is presented. The proposed circuit is verified by the computer simulation and the prototype experiment.

  • PDF

고주파 트랜스포머의 권선배열에 기법 따른 손실해석 (Power Loss Analysis according to Winding Array Method of High Frequency Transformer)

  • 윤신용;김일남
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.15-19
    • /
    • 2005
  • This paper analyzed the power loss characteristics according to winding thickness and winding method of high frequency transformer. Power loss was analyzed by PExprt using FEM tool. The ferrite core model for analysis be used the EE10 type of TDK cop.. Transformer model objected flyback transformer type applied to flyback converter/inverter. Therefore, analysis results of loss were obtained from inner parameters of DC, AC resistance, leakage inductance, copper loss, core loss, and temperature etc.

고 에너지 밀도 펄스 변압기 설계 (Design of A High Energy Density Pulse Transformer)

  • 남상훈;박성수;하기만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2186-2188
    • /
    • 1999
  • A high frequency and energy density pulse transformer is a critical component of a high voltage power supply in a traveling wave tube (TWT) amplifier system. In this paper, processes of design, manufacturing, and test of the transformer are discussed. Primary voltage of the transformer is 240 V. The transformer secondary have two outputs which are 4100 V (Helix) and 2050 V (Collector). Total output power is 860 W. Normal operating frequency of the transformer is 10 kHz. In high energy density pulse transformers, temperature rise is a main problem during its operation. From our study, it was found that resonant current due to leakage inductance and stray capacitance was the main cause of temperature rise. This happens because of the inherently high turn-ratio in high voltage transformers. Solutions to reduce stray components are presented.

  • PDF

전력용 변압기 내부고장시 전압-차전류의 변화에 관한 연구 (Transition of voltage-differential current under internal fault on power transformer)

  • 박재세
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.92-95
    • /
    • 2004
  • Power transformer is an important apparatus in transforming and delivering the power in a power system. It shows less accident ratio than other system apparatus, but once the accident occurs, it causes long-term operation stoppage and economic loss. It brings high bad spillover effects. Therefore, the role of protective relaying, which is to prevent internal fault a power transformer is highly important. This study proposed advanced algorithm that can clearly determine internal fault of the power transformer and magnetizing inrush, through numerical analysis by using the terminal voltage and input output current.

  • PDF

High-Frequency Flyback Transformer Linked PWM Power Conditioner with An Active Switched Capacitor Snubber

  • Mun, Sang-Pil;Kim, Soo-Wook;Joo, Seok-Min;Park, Young-Jun
    • 조명전기설비학회논문지
    • /
    • 제22권7호
    • /
    • pp.7-15
    • /
    • 2008
  • A single active capacitor snubber-assisted soft-switching sinewave pulse modulation utility-interactive power conditioner with a three-winding flyback high frequency transformer link and a bidirectional active power switch in its secondary side has been proposed. With the aid of the switched-capacitor quasi-resonant snubber cell, the high frequency switching devices in the primary side of the proposed DC-to-AC sinewave power inverter can be turned-off with ZVS commutation. In addition to this, the proposed power conditioner in the DCM can effectively take the advantages of ZCS turn-on commutation. Its output port is connected directly to the utility AC power source grid. At the end, the prototype of the proposed HF-UPC is built and tested in experiment. Its power conversion conditioning and processing circuit with a high frequency flyback transformer link is verified and the output sinewave current is qualified in accordance with the power quality guidelines of the utility AC interactive power systems.

Analysis and Design of Transformer Windings Schemes in Multiple-Output Flyback Auxiliary Power Supplies with High-Input Voltage

  • Meng, Xianzeng;Li, Chunyan;Meng, Tao;An, Yanhua
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1122-1132
    • /
    • 2019
  • In this paper, aiming at high-voltage applications, transformer windings schemes of multiple-output two-transistor flyback converters are investigated, which are mainly based on the stray capacitances effect. First, based on a transformer model including equivalent stray capacitors, the operational principle of the converter is presented, and the main influence of its stay capacitors is determined. Second, the windings structures of the transformer are analyzed and designed based on the stray capacitances effect. Third, the windings arrangements of the transformer are analyzed and designed through a coupling analysis of the secondary windings and a stray capacitance analysis between the primary and secondary windings. Finally, the analysis and design conclusions are verified by experimental results obtained from a 60W laboratory prototype of a multiple-output two-transistor flyback converter.

Utililty-Interfaced High-Frequency Flyback Transformer Linked Sinewave Pulse Modulated Inverter for a Small Scale Renewable Energy Conditioner

  • Chandhaket, Srawouth;Koninish, Yoshihiro;Nakaoka, Mutsou
    • Journal of Power Electronics
    • /
    • 제2권2호
    • /
    • pp.112-123
    • /
    • 2002
  • This paper presents a novel prototype of the utility AC power interfaced soft-switching sinewave pulse modulated inverter using the high-frequency flyback for the small scale distributed renewable energy power conditioner. The proposed cricuit with a high-frequency isolation link has a funtion of electrical isolation, which is more cost-effective and reliable for the small-scale distributed renwal energy utilization system from a safety point of riew. The discontinuous conduction mode(DCM) operation of the high-frequency flyback transformer is adopted to establish a simple and low-cost circuit configuration and control scheme. For the simplicity, the circuit operating principle is described on the basis of the modified conventional full bridge inverter, whitch is the typical conventional high-frequency full-bridge inverter employing the high requency flyback transformer to eanble the effictive function of the electrical isolation. Than, the new circuit topology of the unility-interfaced soft-switching sinewave pulse modulated inverter using IGBTs is proposed. The proposed cricuit topology is additionally composed of the auxiliary power regenerating snubber cricuits, which are also mathematically analyzed for the parameter desigen settings. Finally, the performance of the propose inverter is evaluated on the basis of computer-aid simulation. It is noted that the sinewave pulse modulated output current of the inverter is synchronous to the AC main voltage.

Development of Airborne High Density High Voltage Power Supply for Traveling Wave Tubes

  • Park Young-Ju
    • Journal of Power Electronics
    • /
    • 제5권4호
    • /
    • pp.257-263
    • /
    • 2005
  • This paper describes the development and testing results of a high density High Voltage Power Supply (HVPS) that drives microwave Traveling Wave Tubes (TWTs) of phased array transmitters for airborne EW systems. The HVPS is designed to consist of a number of modules connected in series. Among them, especially, the high-density pulse transformer module including the resonant circuit is newly designed to make the HVPS much more reliable. In addition, this paper describes the development of high voltage solid-state modulation using fast switching devices (FETs) and also represents the test results of a modulator module.

직류 배전망 연계를 위한 3상 13.2kV급 반도체 변압기 시스템에 대한 연구 (A Study on the 3-phase 13.2 kV Solid State Transformer for the DC Distribution)

  • 정동근;윤혁진;박시호;김호성;김명호;류명효;백주원
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.315-324
    • /
    • 2021
  • A solid state transformer (SST) that can interface an MVAC of three-phase 13.2 kV and a 1.5 kV DC distribution. SST consists of an AC/DC converter and a DC/DC converter with a high-frequency isolation transformer (HFIT). The AC/DC converter consists of cascaded NPC full-bridge to cope with the MVAC. The DC/DC converter applies a quad active bridge (QAB) topology to reduce the number of the HFIT. Topology analysis and controller design for this specific structure are discussed. In addition, the insulation of HFIT used in DC/DC converters is considered. The discussion is validated using a 300 kVA three-phase SST prototype.