• 제목/요약/키워드: High-power lithium-ion battery

검색결과 106건 처리시간 0.019초

Lithium-ion Stationary Battery Capacity Sizing Formula for the Establishment of Industrial Design Standard

  • Chang, Choong-koo;Sulley, Mumuni
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2561-2567
    • /
    • 2018
  • The extension of DC battery backup time in the DC power supply system of nuclear power plants (NPPs) remains a challenge. The lead-acid battery is the most popular at present. And it is generally the most popular energy storage device. However, extension of backup time requires too much space. The lithium-ion battery has high energy density and advanced gravimetric and volumetric properties. The aim of this paper is development of the sizing formula of stationary lithium-ion batteries. The ongoing research activities and related industrial standards for stationary lithium-ion batteries are reviewed. Then, the lithium-ion battery sizing calculation formular is proposed for the establishment of industrial design standard which is essential for the design of stationary batteries of nuclear power plants. An example of calculating the lithium-ion battery capacity for a medium voltage UPS is presented.

리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구 (Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation)

  • 윤현기;하상현;이재인
    • 전력전자학회논문지
    • /
    • 제26권6호
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

하이브리드 철도차량 시스템의 전기-열 모델 기반 리튬이온 배터리 온도 추정 방안 (Electro-Thermal Model Based-Temperature Estimation Method of Lithium-Ion Battery for Fuel-Cell and Battery Hybrid Railroad Propulsion System)

  • 박성윤;김재영;김종훈;류준형;조인호
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.357-363
    • /
    • 2021
  • Eco-friendly hybrid railroad propulsion system with fuel-cell and battery was suggested to reduce carbon dioxide gas and replace retired diesel railroads. Lithium-ion battery with high energy/power density and long lifetime is selected as the energy source at the battery side due to its excellent performance. However, the performance of lithium-ion batteries was affected by temperature, current rate, and operating condition. Temperature is known to be the most influential factor in changing battery parameters. In addition, appropriate thermal management is required to ensure the safe and effective operation of lithium-ion battery. Electro-thermal coupled model with varying parameter depends on temperature, and state-of-charge (SOC) is suggested to estimate battery temperature. The electric-thermal coupled model contains diffusion current using parameter identification by adaptive control algorithm when considering thermal diffusion effect. An experiment under forced convection was conducted using cylindrical cell and 18 parallel-connected battery module to demonstrate the method.

Technology Developments for Recycling of Lithium Battery Wastes

  • Sohn, Jeong-Soo;Lee, Churl-Kyung
    • 자원리싸이클링
    • /
    • 제12권1호
    • /
    • pp.65-74
    • /
    • 2003
  • As new functional electronics are being developed fast, the commercialization rate of advanced battery as a power source proceeds rapidly. Lithium battery is satisfying the needs of high-energy source for its lightness and good electrochemical property. Especially lithium ion battery, adopted as a new power source for portable electronic equipments around the globe, has been mass-produced. Under the circumstance, the generation of lithium battery wastes is becoming a new environmental problem. In this paper, we are going to inspect technology developments for recycling of lithium battery wastes and scraps in domestic and foreign area, and to suggest how to treat domestic lithium battery wastes and scraps better.

선형 상태 관측기를 이용한 리튬이온 배터리의 SOC 추정 알고리즘 (SOC Estimation Algorithm for the Lithium-Ion Battery by Using a Linear State Observer)

  • 트란녹탐;최우진
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.60-61
    • /
    • 2014
  • Lithium-Ion batteries have become the best tradeoff between energy, power density and cost of the energy storage system in many portable high electric power applications. In order to manage the battery efficiently State of Charge (SOC) of the battery needs to be estimated accurately. In this paper a model-based approach to estimate the SOC of the Lithium-Ion battery based on the estimation of the battery impedance is proposed. The validity and feasibility of the proposed algorithm is verified by the experimental results.

  • PDF

State-of-charge Estimation for Lithium-ion Battery using a Combined Method

  • Li, Guidan;Peng, Kai;Li, Bin
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.129-136
    • /
    • 2018
  • An accurate state-of-charge (SOC) estimation ensures the reliable and efficient operation of a lithium-ion battery management system. On the basis of a combined electrochemical model, this study adopts the forgetting factor least squares algorithm to identify battery parameters and eliminate the influence of test conditions. Then, it implements online SOC estimation with high accuracy and low run time by utilizing the low computational complexity of the unscented Kalman filter (UKF) and the rapid convergence of a particle filter (PF). The PF algorithm is adopted to decrease convergence time when the initial error is large; otherwise, the UKF algorithm is used to approximate the actual SOC with low computational complexity. The effect of the number of sampling particles in the PF is also evaluated. Finally, experimental results are used to verify the superiority of the combined method over other individual algorithms.

고출력 18650 리튬이온 배터리의 발열인자 해석 및 실험적 검증 (Analysis and Experiment Verification of Heat Generation Factor of High Power 18650 Lithium-ion Cell)

  • 강태우;유기수;김종훈
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.365-371
    • /
    • 2019
  • This study shows the feasibility of the parameter of the 1st RC parallel equivalent circuit as a factor of the heat generation of lithium-ion cell. The internal resistance of a lithium-ion cell consists of ohmic and polarization resistances. The internal resistances at various SOCs of the lithium-ion cell are obtained via an electrical characteristic test. The internal resistance is inversely obtained through the amount of heat generated during the experiment. By comparing the resistances obtained using the two methods, the summation of ohmic and polarization resistances is identified as the heating factor of lithium-ion battery. Finally, the amounts of heat generated from the 2C, 3C, and 4C-rate discharge experiments and the COMSOL multiphysics simulation using the summation of ohmic and polarization resistances as the heating parameter are compared. The comparison shows the feasibility of the electrical parameters of the 1st RC parallel equivalent circuit as the heating factor.

Development of Low Cost, High-Performance Miniaturized Lithium-ion Battery Tester Using Raspberry Pi Zero

  • La, Phuong-Ha;Im, Hwi-Yeol;Choi, Sung-Jin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 추계학술대회
    • /
    • pp.47-48
    • /
    • 2017
  • This paper presents a low-cost portable lithium battery parameter measuring and estimating the solution. In this method, lithium battery characteristics are monitored during discharging and charging cycles. The battery profile is analyzed, and its key parameters are estimated by GNU Octave running on Raspberry Pi Zero, a mini computer. The proposed method can measure and estimate the battery parameters for SOC and DOD estimation with reasonable accuracy as well as portability features.

  • PDF

전해질 분리판용 세라믹 부직포와 리튬염간의 반응성 (Reaction Behavior of Ceramic Mat with Lithium Salt for the Electrolyte Separators of Thermal Batteries)

  • 조광연;류도형;신동근;임경훈;진은주;김현이;하상현;최종화
    • 한국세라믹학회지
    • /
    • 제46권6호
    • /
    • pp.587-591
    • /
    • 2009
  • Lithium salt have been used mainly as electrolyte of thermal battery for electricity storage. Recently, The 3phase lithium salt(LiCl-LiF-LiBr) is tried to use as electrolyte of thermal battery for high electric power. It is reported that LiCl-LiF-LiBr salt have high ion mobility due to its high lithium ion concentration. Solid lithium salt is melt to liquid state at above $500{^{\circ}C}$. The lithium ion is easily reacted with support materials. Because the melted lithium ion has small ion size and high ion mobility. For the increasing mechanical strength of electrolyte pellet, the research was started to apply ceramic filter to support of electrolyte. In this study, authors used SiOC web and glass fiber filter as ceramic mat for support of electrolyte and impregnated LiCl-LiF-LiBr salt into ceramic mat at above $500{^{\circ}C}$. The fabricated electrolyte using ceramic mat was washed with distilled water for removing lithium salt on ceramic mat. The washed ceramic mat was observed for lithium ion reaction behavior with XRD, SEM-EDS and so on.

전기자동차용 리튬이온 배터리 급속충전장치 설계와 제어 (A Design and Control of Rapid Electric Vehicle Charging System for Lithium-Ion Battery)

  • 강태원;서용석;박현철;강병익;김성훈
    • 전력전자학회논문지
    • /
    • 제18권1호
    • /
    • pp.26-36
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.