• Title/Summary/Keyword: High-power LED

Search Result 607, Processing Time 0.032 seconds

A Study on the Architecture Design of Smart Farm System based on IoT Technology (IoT 기반의 스마트 팜 시스템 구조설계에 관한 연구)

  • Ghil, Min-Sik;Kwak, Dong-Kurl;Choi, Shin-Hyeong;Shin, Jong-Keun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.543-545
    • /
    • 2019
  • Recently, the demand for smart farms is increasing due to the increase in the cultivation area such as horticulture, fruit trees and special crops. However, due to the irregular weather changes and the cultivation method of the crops due to the different cultivation environment, there are frequent occurrence of diseases and insect pests and infectious diseases due to system error or carelessness, and the cycle is also very short. In addition, the Smart Farm business has been built by combining various sensors (temperature, humidity, CO2, illumination) and LED lighting, but it is costly in terms of frequent errors, lack of power supply, And thus the management can not be efficiently managed. Therefore, this paper combines real time sensing technology based on IoT Platform and high performance control technology to control pests and equipment errors and monitor the growth status of crops in real time based on big data analysis and Artificial Intelligence System.

  • PDF

A Study on Malfunction Mode of CMOS IC Under Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파로 인한 CMOS IC에서의 오동작 특성 연구)

  • Park, Jin-Wook;Huh, Chang-Su;Seo, Chang-Su;Lee, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.559-564
    • /
    • 2016
  • This study examined the malfunction mode of the HCMOS IC under narrow-band high-power electromagnetic wave. Magnetron is used to a narrow-band electromagnetic source. MFR (malfunction failure rate) was measured to investigate the HCMOS IC. In addition, we measured the resistance between specific pins of ICs, which are exposed and not exposed to the electromagnetic wave, respectively. As a test result of measurement, malfunction mode is shown in three steps. Flicker mode causing a flicker in LED connected to output pin of IC is dominant in more than 7.96 kV/m electric field. Self-reset mode causing a voltage drop to the input and output of IC during electromagnetic wave radiation is dominant in more than 9.1 kV/m electric field. Power-reset mode making a IC remained malfunction after electromagnetic radiation is dominant in more than 20.89 kV/m. As a measurement result of pin-to-pin resistance of IC, the differences between IC exposed to electromagnetic wave and normal IC were minor. However, the five in two hundred IC show a relatively low resistance. This is considered to be the result of the breakdown of pn junction when latch-up in CMOS occurred. Based on the results, the susceptibility of HCMOS IC can be applied to a basic database to IC protection and impact analysis of narrow-band high-power electromagnetic waves.

Thermal analysis and optimization of the new ICRH antenna Faraday Screen in EAST

  • Q.C. Liang ;L.N. Liu ;W. Zhang ;X.J. Zhang ;S. Yuan ;Y.Z. Mao ;C.M. Qin;Y.S. Wang ;H. Yang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2621-2627
    • /
    • 2023
  • In Experimental Advanced Superconducting Tokamak (EAST) experiments, to achieve long pulse and high-power ICRH system operation, a new kind of ICRH antenna has been designed. One of the most critical factors in limiting the operation of long pulse and high power is the intense heat load in the front face of the ICRH antenna, especially the Faraday Screen (FS). Therefore, the cooling channels of FS need to be designed. According to thermal-hydraulic analysis, the FS tubes are divided into several groups to achieve more excellent water cooling capability. The number of series and parallel tubes in one group is chosen as six. This antenna went into service in the spring of 2021, and it is delightful that the temperature distribution of the FS tube is below 400 ℃ in 14.5 s and 1.8 MW ICRH system operation. However, the active water-cooling design was not carried out on the upper and lower plates of FS, which led to severe ablations on that region under long pulse and high power operation, and the temperature is up to 800. Therefore, the upper and lower side plates of the FS were designed with water cooling based on thermal-hydraulic analysis. During the 2022 winter experiments, the temperature of ICRH antenna FS was lower than 400 in the pulse of 200s and the power of 1 MW operation.

Self-Consumption Solar PV Economic Rate Analysis for RE100 Companies in Korea (한국 RE100 기업의 자가소비 태양광 발전 경제적 비율 분석)

  • Jong Yi Lee;Kyung Nam Kim
    • Current Photovoltaic Research
    • /
    • v.11 no.4
    • /
    • pp.134-143
    • /
    • 2023
  • Efforts are being made to respond to global warming. Interest in and demand for the private sector-led RE100 campaign is also increasing. Self-built solar power generation, one of the implementation tools for RE100, is not expanding. However, it can be an economical means of implementation in the long run. In this study, we intend to analyze the impact on the optimal ratio of self-solar power generation using HOMER simulation. OPR defines the optimal solar power generation ratio and looks into what changes there are in the optimal solar power ratio when self-power consumption increases and external power purchase price changes. As a result, the optimal rate of self-solar power generation has a low impact even if self-power consumption increases. As the external power unit price increases, the optimal ratio increases, and at a power unit price of 100 KRW/kWh, OPR is 24%; at 200 KRW/kWh OPR is 31%; and at 300 KRW/kWh OPR is 34%. This shows that the electricity price replaced during the life cycle has a high impact on the economic feasibility of solar power generation. However, when the external power unit price reached a certain level, the increase in OPR decreased. This shows that it is difficult for domestic companies to achieve RE100 based on the economic feasibility of solar energy alone. Therefore, efforts are needed to supply renewable energy in the public sector.

Photocatalytic Oxidation of Arsenite Using Goethite and UV LED (침철석과 자외선 LED를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Arsenic (As) has been considered as the most toxic one among various hazardous materials and As contamination can be caused naturally and anthropogenically. Major forms of arsenic in groundwater are arsenite [(As(III)] and/or arsenate [(As(V)], depending on redox condition: arsenite and arsenate are predominant in reduced and oxidized environments, respectively. Because arsenite is much more toxic and mobile than arsenate, there have been a number of studies on the reduction of its toxicity through oxidation of As(III) to As(V). This study was initiated to develop photocatalytic oxidation process for treatment of groundwater contaminated with arsenite. The performance of two types of light sources (UV lamp and UV LED) was compared and the feasibility of goethite as a photocatalyst was evaluated. The highest removal efficiency of the process was achieved at a goethite dose of 0.05 g/L. Based on the comparison of oxidation efficiencies of arsenite between two light sources, the apparent performance of UV LED was inferior to that of UV lamp. However, when the results were appraised on the basis of their emitting UV irradiation, the higher performance was achieved by UV LED than by UV lamp. This study demonstrates that environmentally friendly process of goethite-catalytic photo-oxidation without any addition of foreign catalyst is feasible for the reduction of arsenite in groundwater containing naturally-occurring goethite. In addition, this study confirms that UV LED can be used in the photo-oxidation of arsenite as an alternative light source of UV lamp to remedy the drawbacks of UV lamp, such as long stabilization time, high electrical power consumption, short lifespan, and high heat output requiring large cooling facilities.

Methods to Reduce Greenhouse Gas for University Buildings to Make a Low-Carbon Green Campus - With Case Study on the 'E' University -

  • Song, Su Min;Peom, Sung Woo;Park, Hyo Soon;Song, Kyoo Dong
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.37-46
    • /
    • 2014
  • University buildings are energy-guzzling facility that consume more than 10,000TOE within a campus annually. Even the consumption is on an upswing trend. Behind such high consumption are there cheap power rates for education facility, lack of high-efficiency equipment and ever-increasing use of various information equipment. Being keenly aware that greenhouse gas emission increases due to such rise of energy consumption, the present study carried out a case study. In the case study, the study chose the buildings of E university from top 10 universities that consume energy most in Seoul and examined the current status of their energy consumption and greenhouse gas emission. And then it set the reduction target of greenhouse gas by year. Putting aside a middle and long-termed strategy for later endeavor, it first established the 1st year's implementation plan (2014) for energy saving and greenhouse gas reduction with limited budget and according to greenhouse gas reduction target. The plan is specified as follows. Targets for energy saving are mainly divided into two sectors: machine equipment and electric equipment. 7 ideas were proposed. Three ideas to improve machine equipment are to replace with high-efficiency boilers and chillers and to adjust the position of the cooling tower. By doing so, it was estimated that energy could be saved by 176.34TOE in total and greenhouse gas could be reduced by 370.771t$CO_2$-eq. Four ideas to improve electric equipment include the replacement with LED lights, LED emergency lights and high-efficiency motors and the installation of motion sensors. It was calculated that such replacement could conserve 1,076.08TOE (electric energy) and reduce 2,181.420t$CO_2$-eq (greenhouse gas).

A study on development of RGB color variable optical ID module considering smart factory environment (스마트 팩토리 환경을 고려한 RGB 컬러 가변형 광 ID 모듈개발 연구)

  • Lee, Min-Ho;Timur, Khudaybergenov;Lee, Beom-Hee;Cho, Ju-Phil;Cha, Jae-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.623-629
    • /
    • 2018
  • Smart Factory is a concept of automatic production system of machines by the fusion of ICT and manufacturing. As a base technology for realizing such a smart factory, there is an increasing interest in a low-power environmentally friendly LED lighting system, and researches on so-called optical ID related application technologies such as communication using a LED and position recognition are actively underway. In this paper, We have proposed a system that can reliably identify logistics location and additional information without being affected by electromagnetic interference such as high voltage, high current, and generator in the plant. Through the basic experiment, we confirmed the applicability of the color ID recognition rate from 98.8% to 93.8% according to the eight color variations in the short distance.

The Characteristics of the Output Voltage Ferroelectrics for High Voltages Pulse Generators (고전압 펄스 발생기를 위한 강유전체의 전압 출력 특성)

  • Jang, Dong-Gwan;Choi, Sun-Ho;Hwang, Sunl-Mook;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1408-1412
    • /
    • 2013
  • High power pulse generating technology is to accumulate the energy for relatively long and then to create a strong force by emitting the energy very fast. High power pulse generating technology has recently been using in various fields like environments, industry, research, military and so on. Numerous studies about high power pulse generators have already been performed and commercialized in various conditions. However, in aspect of their size and weight, it is hard to carry the generators which currently have been developed. For these reasons, din nations like America or Russia, the researches have been performed for Ferroelectric Generators(FEG), which have relatively simple structure and are economical. To realize the ferroelectric generator, in this study, we selected the PZTs which have different physical properties respectively, and then shocked them using explosives. The PZT samples with volumes of $0.31{\sim}0.94cm^3$ were depolarized by shocked and produced the waveform that have peak voltages of 4.28 ~ 15kV. The lowest relative permittivity sample generated much higher peak voltage. And sudden voltage drops which seem to be caused by dielectric breakdown were observed in some experiments using low young's modulus samples. Also, increase in thickness led to increase in peak voltage, but the ratio of the voltage rise did not reach the ration of the thickness increase.

Performance of VLC-CDMA Communication System Using LED (LED를 이용한 VLC-CDMA 통신 시스템 성능 분석)

  • Bae, Su-Jin;Hong, Yeong-Jo;Lee, Kye-San
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.83-90
    • /
    • 2009
  • White LEDs(Light Emitting Diode) offer advantageous properties such as high brightness, improved reliability, lower power consumption, and long lifetimes. An LED is an electronic device that converts an electrical signal into a tight signal and is used not only in Optical Communication Indoor wireless optical illuminating rooms, but also for wireless optical communication systems. Currently, studies about these white LEDs have been being progressed, and in this raper, we discuss the multiplex and the multiple access method of VLC(Visible Light Communication) systems using white LEDs. In proposed system, CDMA(Code Division Multiple Access) apples to VLC system to reduce interference of VLC system, and improve capacity. The superiority of OOK modulation is presented in analysis of results by comparing VLC-CDMA communication system using OOK(On-off keying) modulation and BPSK modulation in AWGN(Additive White Gaussian Noise) channel and Diffuse channel. And we investigate the significance of a solution of interference by multipath by comparing BER in multipath channel and AWGN channel. In the proposed system, we assume Directed LOS(Line Of Sight) and Diffuse Link, and suppose VLC-CDMA using OOC(Optical Orthogonal Code) as methods to increase efficiency of system by removing ISI(Inter Symbol Interference) caused by multiple access, optical spreading code, and also present an analysis of its performance.

  • PDF

Controlling Defects in Graphene Film for Enhanced-Quality Current Collector of Zinc-Ion Batteries with High Performance (고성능 아연-이온 전지의 고품질 집전체를 위한 그래핀 필름의 결함 제어)

  • Young-Geun Lee;Geon-Hyoung An
    • Korean Journal of Materials Research
    • /
    • v.33 no.4
    • /
    • pp.159-163
    • /
    • 2023
  • Zinc-ion Batteries (ZIBs) are currently considered to be effective energy storage devices for wearable electronics because of their low cost and high safety. Indeed, ZIBs show high power density and safety compared with conventional lithium ion batteries (LIBs) and exhibit high energy density in comparison with supercapacitors (SCs). However, in spite of their advantages, further current collector development is needed to enhance the electrochemical performance of ZIBs. To design the optimized current collector for high performance ZIBs, a high quality graphene film is suggested here, with improved electrical conductivity by controlling the defects in the graphene film. The graphene film showed improved electrical conductivity and good electron transfer between the current collector and active material, which led to a high specific capacity of 346.3 mAh g-1 at a current density of 100 mA g-1, a high-rate performance with 116.3 mAh g-1 at a current density of 2,000 mA g-1, and good cycling stability (68.0 % after 100 cycles at a current density of 1,000 mA g-1). The improved electrochemical performance is firmly because of the defects-controlled graphene film, leading to improved electrical conductivity and thus more efficient electron transfer between the current collector and active material.