• Title/Summary/Keyword: High-power Amplifiers

Search Result 198, Processing Time 0.027 seconds

Characteristics of multi-stage dye laser amplification and Second Harmonic Generation (색소레이저의 다단 증폭 및 SHG 특성)

  • 이영우
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.4
    • /
    • pp.946-949
    • /
    • 2004
  • We obtained ultra-short single pulse with an energy of 80 uJ from Distributed feedback Dye laser. Using three stages of amplifiers constructed by two stages of dye amplifiers and one bethune cell amplifier, we obtained high power pulse and second harmonic generation with BBO in ultraviolet region.

Three stage amplification of Distributed Feedback Dye Laser (Distributed Feedback Dye Laser의 3단 증폭특성)

  • 이영우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.339-341
    • /
    • 2004
  • We obtained ultra-short single pulse with an energy of 80 of from self Q-switched Distributed Feedback Dye Laser. Using three stages of amplifiers constructed by two stages of dye amplifiers and one bethune cell amplifier, we obtained high power pulse and second harmonic generation with BBO in ultraviolet region.

  • PDF

Design of Low Distortion Power Amplifier for Wideband Digital Communication (광대역 디지털 통신용 저왜곡 전력 증폭기 설계)

  • Park, Hyun Sup;Kim, Su Kyung;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.116-125
    • /
    • 1998
  • Most of modern mobile communication systems require low distortion in addition to high power and high efficiency characteristics for power amplifiers. The power amplifiers cause adjacent channel interference by intermodulation and spectral regrowth. In order to analyze the effects of the power amplifier on communication system, a 22Mcps spreaded digital modulated signal source and a ISM band power amplifier have been constructed, ACPR characteristics are simulated and measured for the RZ and NRZ encoded signals.

  • PDF

A Reconfigurable Power Divider for High Efficiency Power Amplifiers (고효율 전력 증폭기를 위한 재구성성이 있는 전력 분배기)

  • Kim, Seung-Hoon;Chung, In-Young;Jeong, Jin-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.107-114
    • /
    • 2009
  • In this paper, high efficiency amplifier configuration is proposed using the reconfigurable power divider. In order to enhance average efficiency of linear power amplifiers for wireless communication, it is required to increase efficiency in low output power region. The proposed power divider operates in two modes, high power mode and low power mode, according to output power. In each mode, it allows impedance matches and low loss, which is made possible by employing two $\lambda/4$ coupled lines and two switches. The fabricated power divider shows the return loss ($S_{11}$) and insertion loss ($S_{21}$) of -16.49 dB and -0.83 dB, respectively, in low power mode. In high power mode, the measured return loss ($S_{11}$) and insertion loss ($S_{31}$) are -16.28 dB and -0.73 dB, respectively. This result successfully demonstrates the reconfigurability of the proposed power divider.

Systematic Approach for Design of Broadband, High Efficiency, High Power RF Amplifiers

  • Mohadeskasaei, Seyed Alireza;An, Jianwei;Chen, Yueyun;Li, Zhi;Abdullahi, Sani Umar;Sun, Tie
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.51-61
    • /
    • 2017
  • This paper demonstrates a systematic approach for the design of broadband, high efficiency, high power, Class-AB RF amplifiers with high gain flatness. It is usually difficult to simultaneously achieve a high gain flatness and high efficiency in a broadband RF power amplifier, especially in a high power design. As a result, the use of a computer-aided simulation is most often the best way to achieve these goals; however, an appropriate initial value and a systematic approach are necessary for the simulation results to rapidly converge. These objectives can be accomplished with a minimum of trial and error through the following techniques. First, signal gain variations are reduced over a wide bandwidth using a proper pre-matching network. Then, the source and load impedances are satisfactorily obtained from small-signal and load-pull simulations, respectively. Finally, two high-order Chebyshev low-pass filters are employed to provide optimum input and output impedance matching networks over a bandwidth of 100 MHz-500 MHz. By using an EM simulation for the substrate, the simulation results were observed to be in close agreement with the measured results.

A Study on the Design of Linear Power Amplifier at Digital Control System (디지털 제어방식의 선형전력증폭기 설계에 관한 연구)

  • 김갑기;조학현;조기량
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.724-730
    • /
    • 2002
  • Digital communication systems are required to cause the minimum interference to adjacent channels, they must therefore employ the linear power amplifiers. In respect to linear power amplifiers, there are many linearization techniques. Feedforward power amplifier represent very wide bandwidth and high linearization capability. In the feedforward systems, overall efficiency is reduced due to the loss of delay line. In this paper, delay filter instead of transmission delay line adapted to get more high efficiency. Experimental results showed that ACLR (Adjacent Channel Leakage Ratio) has improved 17.43(dB), which is added 3.44(dB) by using the delay filter.

Design of High Efficiency Switching-Mode Doherty Power Amplifier Using GaN HEMT (GaN HEMT를 이용한 고효율 스위칭 모드 도허티 전력증폭기 설계)

  • Choi, Gil-Wong;Kim, Hyoung-Jong;Choi, Jin-Joo;Kim, Seon-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.72-79
    • /
    • 2010
  • In this paper, we describe the design and implementation of a high efficiency Doherty power amplifier using gallium nitride (GaN) high-electron mobility transistor (HEMT). The carrier and peaking amplifiers of the proposed Doherty power amplifier consist of the switching-mode Class-E power amplifiers. The test conditions are a duty of 10% and a pulse width of $100\;{\mu}s$ and pulse repetition frequency (PRF) of 1 kHz for a S-band radar application. A RF performance peak PAE of 64% with drain efficiency of 80.6%, at 6 dB output back-off point from saturated output power of 45.5 dBm, was obtained at 2.85 GHz.

Design and Characteristics of Magnetic Amplifier (자기증폭기의 시형설계 및 동작특성)

  • 현경호;오명환;이광원
    • 전기의세계
    • /
    • v.20 no.3
    • /
    • pp.17-26
    • /
    • 1971
  • An experimental design of magnetic amplifiers and their characteristics in steady state are presented. A saturable reactor model having 2KVA capacity was designed, using Z-10 grain-oriented silicon steel which is commonly used in power transformers. Experimental and theoretical analysis show that the experimental results are in good agreement with the equal ampere-turns law. In addition to the saturable reactor, the self-saturated magnetic amplifiers of 0.4VA and 5VA capacity, using 50% Ni-Fe alloy cores having rectangular hysteresis loops were designed. Control characteristic curves of these amplifiers show high ampere-turn gain enough to be used for voltage controllers under load and non-contact magnetic switches of the rated capacity.

  • PDF

High Power Amplifier using Radial Power Combiner (레디알 전력 결합기를 이용한 고출력 증폭기)

  • Choi, Jong-Un;Yoon, Young-Chul;Kim, Young
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.626-632
    • /
    • 2017
  • This paper describes a high power amplifier combining eight low power amplifiers using a radial power combiner with low insertion loss. The radial power combiner is a non-resonant type combiner with 8 input ports and is implemented by microstrip transmission line. The combiner characteristics designed at operating frequency of 1.045 GHz have an insertion loss of 0.7 dB and a return loss of more than 12 dB. Also, the low power amplifier used was designed with AFT27S010NT1 transistor and designed to satisfy the same gain, phase and constant output characteristic at operating frequency. The high power amplifier, which combiners the radial power combiner and the drive amplifier of 8 W output by driving low power amplifiers obtained the output characteristic of 33 W at operating frequency of 1.045 GHz. Also, the change of the output characteristic of the amplifier using the radial combiner was graceful degradation when the low power amplifier failed one by one.

GaN HEMT Based High Power and High Efficiency Doherty Amplifiers with Digital Pre-Distortion Correction for WiBro Applications

  • Park, Jun-Chul;Kim, Dong-Su;Yoo, Chan-Sei;Lee, Woo-Sung;Yook, Jong-Gwan;Chun, Sang-Hyun;Kim, Jong-Heon;Hahn, Cheol-Koo
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.1
    • /
    • pp.16-26
    • /
    • 2011
  • This paper presents high power and high efficiency Doherty amplifiers for 2.345 GHz wireless broadband (WiBro) applications that use a Nitronex 125-W ($P_{3dB}$) GaN high electron mobility transistor (HEMT). Two- and three-way Doherty amplifiers and a saturated Doherty amplifier using Class-F circuitry are implemented. The measured result for a center frequency of 2.345 GHz shows that the two-way Doherty amplifier attains a high $P_{3dB}$ of 51.5 dBm, a gain of 12.5 dB, and a power-added efficiency (PAE) improvement of about 16 % compared to a single class AB amplifier at 6-dB back-off power region from $P_{3dB}$. For a WiBro OFDMA signal, the Doherty amplifier provides an adjacent channel leakage ratio (ACLR) at 4.77 MHz offset that is -33 dBc at an output power of 42 dBm, which is a 9.5 dB back-off power region from $P_{3dB}$. By employing a digital pre-distortion (DPD) technique, the ACLR of the Doherty amplifier is improved from -33 dBc to -48 dBc. The measured result for the same frequency shows that the three-way Doherty amplifier, which has a $P_{3dB}$ of 53.16 dBm and a gain of 10.3 dB, and the saturated Doherty amplifier, which has a $P_{3dB}$ of 51.1 dBm and a gain of 10.3 dB, provide a PAE improvement of 11 % at the 9-dB back-off power region and 7.5 % at the 6-dB back-off region, respectively, compared to the two-way Doherty amplifier.