• Title/Summary/Keyword: High-performance Liquid Chromatography-Electrospray Ionization-mass Spectrometry

Search Result 57, Processing Time 0.023 seconds

Identification and Quantification of Glucosinolates in Rapeseed (Brassica napus L.) Sprouts Cultivated under Dark and Light Conditions

  • Lee, Min-Ki;Arasu, Mariadhas Valan;Chun, Jin-Hyuk;Seo, Jeong Min;Lee, Ki-Teak;Hong, Soon-Taek;Kim, In Ho;Lee, Yong-Hwa;Jang, Young-Seok;Kim, Sun-Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.315-322
    • /
    • 2013
  • BACKGROUND: This study was performed for the identification and quantification of glucosinolate (GSL) contents in seven varieties of rapeseed (Brassica napus L.) sprouts cultivated under dark and light conditions. METHODS AND RESULTS: Crude glucosinolates (GSLs) were desulfated by treating with aryl sulfatase and purified using diethylaminoethyl sepharose (DEAE) anion exchange column. Individual GSLs were quantified using high-performance liquid chromatography (HPLC) with electrospray ionization-tandem mass spectrometry (ESI-MS/MS). Eleven GSLs including six aliphatic (progoitrin, sinigrin, glucoalyssin, gluconapoleiferin, gluconapin, and glucobrassicanapin), four indolyl (4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, and neoglucobrassicin) and one aromatic (gluconasturtiin) were identified based on the fragmentation patterns of MS spectrum. Aliphatic GSLs were noted as the predominant group with average 85.2% of the total contents. The most abundant GSLs were progoitrin which was ranged at $8.14-118.68{\mu}mol/g$ dry weight (DW). The highest total GSL amounts were documented in 'Hanra' ($146.02{\mu}mol/g$ DW) under light condition and 'Mokpo No. 68' ($86.67{\mu}mol/g$ DW) in dark condition, whereas the lowest was in 'Tamra' (30.13 and $14.50{\mu}mol/g$ DW) in both conditions. The sum of aliphatic GSLs attributed > 80% in all varieties, except 'Tamra' (67.7% and 64.9% in dark and light conditions, respectively) in the total GSL accumulation. Indolyl GSLs were ranged $2.41-15.73{\mu}mol/g$ DW, accounted 2.78-33.6% of the total GSLs in rapeseed varieties. CONCLUSION(S): These results provide valuable information regarding potential beneficial GSL contents individually. This study attempts to contribute to knowledge of the nutritional properties of the different varieties of rapeseed plants. These results may be useful for the evaluation of dietary information.

Metabolomes and transcriptomes revealed the saponin distribution in root tissues of Panax quinquefolius and Panax notoginseng

  • Wei, Guangfei;Yang, Feng;Wei, Fugang;Zhang, Lianjuan;Gao, Ying;Qian, Jun;Chen, Zhongjian;Jia, Zhengwei;Wang, Yong;Su, He;Dong, Linlin;Xu, Jiang;Chen, Shilin
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.757-769
    • /
    • 2020
  • Background: Panax quinquefolius and Panax notoginseng are widely used and well known for their pharmacological effects. As main pharmacological components, saponins have different distribution patterns in the root tissues of Panax plants. Methods: In this study, the representative ginsenosides were detected and quantified by desorption electrospray ionization mass spectrometry and high-performance liquid chromatography analysis to demonstrate saponin distribution in the root tissues of P. quinquefolius and P. notoginseng, and saponin metabolite profiles were analyzed by metabolomes to obtain the biomarkers of different root tissues. Finally, the transcriptome analysis was performed to demonstrate the molecular mechanisms of saponin distribution by gene profiles. Results: There was saponin distribution in the root tissues differed between P. quinquefolius and P. notoginseng. Eight-eight and 24 potential biomarkers were detected by metabolome analysis, and a total of 340 and 122 transcripts involved in saponin synthesis that were positively correlated with the saponin contents (R > 0.6, P < 0.05) in the root tissues of P. quinquefolius and P. notoginseng, respectively. Among them, GDPS1, CYP51, CYP64, and UGT11 were significantly correlated with the contents of Rg1, Re, Rc, Rb2, and Rd in P. quinquefolius. UGT255 was markedly related to the content of R1; CYP74, CYP89, CYP100, CYP103, CYP109, and UGT190 were markedly correlated with the Rd content in P. notoginseng.

The Study on the Analysis Method of Tetrodotoxin in Puffer Fish (복어 중 테트로도톡신 분석법에 관한 연구)

  • Kang, Young-Woon;Lee, Yoon-Suk;Park, Sung-Kug;Seo, Jung-Heok;Kim, Mee-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.1
    • /
    • pp.37-41
    • /
    • 2012
  • The current standard for testing tetrodotoxin (TTX) in foodstuffs is the mouse bioassay (MBA) in Korea as in many other countries. However, this test suffers from potential ethical concerns over the use of live animals. In addition, the mouse bioassay does not test for a specific toxin thus a sample resulting in mouse incapacitation would need further confirmatory testing to determine the exact source toxin (e.g., TTX, STX, brevotoxin, etc.). Furthermore, though the time of death is proportional to toxicity in this assay, the dynamic range for this proportional relationship is small thus many samples must be diluted and new mice be injected to yield a result that falls within the quantitative dynamic range. Therefore, in recent years, there have been many efforts in this field to develop alternative assays. High performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) has been emerged as one of the most promising options. A LC-MS-MS method involves solid-phase extraction (SPE) and followed by analysis using an electrospray in the positive ionization mode and multiple reactions monitoring (MRM). To adopt LC-MS-MS method as alternative standard for testing TTX, we performed a validation study for the quantification of TTX in puffer fish. This LC-MS-MS method showed good sensitivity as limits of detection (LOD) of $0.03{\sim}0.08{\mu}g/g$ and limits of quantification (LOQ) of $0.10{\sim}0.25{\mu}g/g$. The linearity ($r^2$) of tetrodotoxin were 0.9986~0.9997, the recovery were 80.9~103.0% and the relative standard deviations (RSD) were 4.3~13.0%. The correlation coefficient between the mouse bioassay and LC/MS/MS method was higher than 0.95.

Chemical transformation and target preparation of saponins in stems and leaves of Panax notoginseng

  • Wang, Ru-Feng;Li, Juan;Hu, Hai-Jun;Li, Jia;Yang, Ying-Bo;Yang, Li;Wang, Zheng-Tao
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.270-276
    • /
    • 2018
  • Background: Notoginsenoside Ft1 is a promising potential candidate for cardiovascular and cancer disease therapy owing to its positive pharmacological activities. However, the yield of Ft1 is ultralow utilizing reported methods. Herein, an acid hydrolyzing strategy was implemented in the acquirement of rare notoginsenoside Ft1. Methods: Chemical profiles were identified by ultraperformance liquid chromatography coupled with quadruple-time-of-flight and electrospray ionization mass spectrometry (UPLC-Q/TOF-ESI-MS). The acid hydrolyzing dynamic changes of chemical compositions and the possible transformation pathways of saponins were monitored by ultrahigh-performance LC coupled with tandem MS (UHPLC-MS/ MS). Results and conclusion: Notoginsenoside Ft1 was epimerized from notoginsenoside ST4, which was generated through cleaving the carbohydrate side chains at C-20 of notoginsenosides Fa and Fc, and vinaginsenoside R7, and further converted to other compounds via hydroxylation at C-25 or hydrolysis of the carbohydrate side chains at C-3 under the acid conditions. High temperature contributed to the hydroxylation reaction at C-25 and 25% acetic acid concentration was conducive to the preparation of notoginsenoside Ft1. C-20 epimers of notoginsenoside Ft1 and ST4 were successfully separated utilizing solvent method of acetic acid solution. The theoretical preparation yield rate of notoginsenoside Ft1 was about 1.8%, which would be beneficial to further study on its bioactivities and clinical application.

Anti-inflammatory effects of ethyl acetate fraction of unripe astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) on lipopolysaccharide-stimulated RAW 264.7 cells (지방질다당류로 자극한 RAW 264.7 세포에서 청도반시 땡감 에틸 아세테이트 분획물의 항염증 효과)

  • Park, Ye Bin;Jeong, Ha-Ram;Lee, Seung Hwan;Kim, Taewan;Kim, Dae-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • Unripe astringent persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) is a by-product produced when thinning out the superfluous fruit of persimmon. We investigated whether unripe astringent persimmon has antioxidative and anti-inflammatory effects. Unripe astringent persimmon extract was fractionated sequentially in n-hexane, chloroform, ethyl acetate, n-butanol, and water. The ethyl acetate fraction had the highest total phenolic content, total flavonoid content, and antioxidant capacity compared to those of the other fractions. Pretreatment of lipopolysaccharide-stimulated RAW 264.7 macrophages with the ethyl acetate fraction reduced nitric oxide, interleukin-6, and intracellular oxidative stress in a dose-dependent manner. Ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis revealed gallic acid, protocatechuic acid, 4-hydroxybenzoic acid, quercetin-3-O-glucoside, quercetin, and p-coumaric acid as the phenolic compounds of the ethyl acetate fraction. Collectively, these findings suggest that unripe astringent persimmon is a source of functional materials that can promote antioxidative and anti-inflammatory effects.

Development of simultaneous analytical method for investigation of ketamine and dexmedetomidine in feed (사료 내 케타민과 덱스메데토미딘의 잔류조사를 위한 동시분석법 개발)

  • Chae, Hyun-young;Park, Hyejin;Seo, Hyung-Ju;Jang, Su-nyeong;Lee, Seung Hwa;Jeong, Min-Hee;Cho, Hyunjeong;Hong, Seong-Hee;Na, Tae Woong
    • Analytical Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.136-142
    • /
    • 2022
  • According to media reports, the carcasses of euthanized abandoned dogs were processed at high temperature and pressure to make powder, and then used as feed materials (meat and bone meal), raising the possibility of residuals in the feed of the anesthetic ketamine and dexmedetomidine used for euthanasia. Therefore, a simultaneous analysis method using QuEChERS combined with high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry was developed for rapid residue analysis. The method developed in this study exhibited linearity of 0.999 and higher. Selectivity was evaluated by analyzing blank and spiked samples at the limit of quantification. The MRM chromatograms of blank samples were compared with those of spiked samples with the analyte, and there were no interferences at the respective retention times of ketamine and dexmedetomidine. The detection and quantitation limits of the instrument were 0.6 ㎍/L and 2 ㎍/L, respectively. The limit of quantitation for the method was 10 ㎍/kg. The results of the recovery test on meat and bone meal, meat meal, and pet food showed ketamine in the range of 80.48-98.63 % with less than 5.00 % RSD, and dexmedetomidine in the range of 72.75-93.00 % with less than 4.83 % RSD. As a result of collecting and analyzing six feeds, such as meat and bone meal, prepared at the time the raw material was distributed, 10.8 ㎍/kg of ketamine was detected in one sample of meat and bone meal, while dexmedetomidine was found to have a concentration below the limit of quantitation. It was confirmed that the detected sample was distributed before the safety issue was known, and thereafter, all the meat and bone meal made with the carcasses of euthanized abandoned dogs was recalled and completely discarded. To ensure the safety of the meat and bone meal, 32 samples of the meat and bone meal as well as compound feed were collected, and additional residue investigations were conducted for ketamine and dexmedetomidine. As a result of the analysis, no component was detected. However, through this investigation, it was confirmed that some animal drugs, such as anesthetics, can remain without decomposition even at high temperature and pressure; therefore, there is a need for further investigation of other potentially hazardous substances not controlled in the feed.

Characterization of Antibacterial Compounds from Bacillus polyfermenticus CJ6 and Its Growth Inhibition Effect on Food-Borne Pathogens (Bacillus polyfermenticus CJ6가 생산하는 항세균 물질의 특성 및 병원성 식중독 미생물의 성장 억제 효과)

  • Jung, Ji-Hye;Chang, Hae-Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.903-911
    • /
    • 2011
  • In this study, Bacillus polyfermenticus CJ6 harboring antibacterial activity was isolated from meju. The antibacterial activity of Bacillus polyfermenticus CJ6 was stable in the pH range of 3.0~9.0, but it disappeared after culture at $70^{\circ}C$ for 24 hr. Antibacterial activity was inactivated by proteinase K, protease, and ${\alpha}$-chymotrypsin, indicating its proteinaceous nature. The growth inhibitory effects of B. polyfermenticus CJ6 culture on food-borne pathogens such as Staphylococcus aureus, Salmonella Typhi, Listeria monocytogenes, and Escherichia coli O157:H7 were examined in this study. Approximately 6~6.2 log CFU/mL of each pathogen was co-cultured with B. polyfermenticus CJ6 in a 50 mL culture volume for 24 hr. Growth of S. aureus and L. monocytogenes was completely inhibited after 3 hr of incubation. Growth of S. Typhi and E. coli O157:H7 was also completely inhibited after 6 hr of incubation. The antibacterial compounds from B. polyfermenticus CJ6 were purified by solid phase extraction (C18 Sep-pak cartridge), recycling preparative HPLC, and analytical HPLC. Ultra-high performance liquid chromatography and electrospray ionization tandem mass spectrometry analysis were used to identify the purified antibacterial compounds, which were confirmed to be five peptides (757.4153 Da, 750.3444 Da, 1024.5282 Da, 1123.6083 Da, and 1617.8170 Da).