• Title/Summary/Keyword: High-lift system

Search Result 236, Processing Time 0.033 seconds

A Study on the Analysis of Lateral Vibration of Flexible Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 횡진동 해석에 관한 연구)

  • Son, Seon-Tae;Kil, Byung-Lea;Cho, Kwon-Hae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.241-249
    • /
    • 2008
  • In this study, lateral vibration analysis has been conducted on a propulsion and lift shafting system for an air cushion vehicle using ANSYS code. The shafting system is totally flexible multi-elements system including air propeller, aluminum alloy of lift fan and thin walled shaft with flexible coupling. The analysis included the lateral natural frequencies, mode shapes and harmonic analysis of the shafting system taking into account three-dimensional models for propulsion and lifting shaft system. In case of ACV the yawing and pitching rate of craft will be quite high. During yawing and pitching of craft significant gyroscopic moment will be applied to the shafting and will generate high amplitude of lateral vibration. So, such a shafting system has very intricate lateral vibrating characteristics and natural frequencies of shafting must be avoided in the range of operating revolution. The control of lateral vibration is included in this study.

Design Exploration of High-Lift Airfoil Using Kriging Model and Data Mining Technique

  • Kanazaki, Masahiro;Yamamoto, Kazuomi;Tanaka, Kentaro;Jeong, Shin-Kyu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.28-36
    • /
    • 2007
  • A multi-objective design exploration for a three-element airfoil consisted of a slat, a main wing, and a flap was carried out. The lift curve improvement is important to design high-lift system, thus design has to be performed with considered multi-angle. The objective functions considered here are to maximize the lift coefficient at landing and near stall conditions simultaneously. Kriging surrogate model which was constructed based on several sample designs is introduced. The solution space was explored based on the maximization of Expected Improvement (EI) value corresponding to objective functions on the Krigingmodels. The improvement of the model and the exploration of the optimum can be advanced at the same time by maximizing EI value. In this study, a total of 90 sample points are evaluated using the Reynolds averaged Navier-Stokes simulation(RANS) for the construction of the Kriging model. In order to obtain the information of the design space, two data mining techniques are applied to design result. One is functional Analysis of Variance(ANOVA) which can show quantitative information and the other is Self-Organizing Map(SOM) which can show qualitative information.

Fatigue Crack Propagation Life of Partially Penetrated Butt Welds in High Strength Steel (고장력 강판 부분용입 맞대기 용접부의 피로균열진전수명 평가)

  • Han, Seung-Ho;Shin, Byung-Chun;Lee, Woong;Choi, Jeon-Ho
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.72-79
    • /
    • 2003
  • Fatigue behaviour of partially penetrated butt-welded joints in high strength steel plates, in which crack-like structural defect, i.e. lack of penetration(LOP), is inevitably introduced during welding processes, was investigated. Fatigue lives of two types of welded joints, namely X-grooved and K-grooved joints, were experimentally determined first. Observed fatigue crack propagation behaviours of the partially penetrated butt-welds were interpreted through considering 3-dimensional semi-elliptical crack shape in front of the LOP. Based on such interpretation, a fracture mechanical method to estimate stress intensity factors at the crack tip was proposed. Since the fatigue lift of the partially penetrated butt-welds was strongly influenced by the ratio of size of the LOP to thickness, D/t, the D/t was used as a main parameter to calculate the fatigue lift by using the proposed method. Comparison of the fatigue lift obtained experimentally and analytically agreed well with each other. Hence it is suggested that the method used in this work to predict fatigue lift of the partially penetrated butt-welds can be applied to real cases with improved lift-prediction capability.

A Study on the Measurement of Contact Force of Pantograph of Korean High Speed Train (한국형 고속전철 집전장치 접촉력 계측에 관한 연구)

  • Seo, Sung-Il;Cho, Yong-Hyun;Park, Choon-Soo;Mok, Jin-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1453-1457
    • /
    • 2003
  • The pantograph for Korean High Speed Train was developed by home-grown technology. In this study, a system to measure the contact force of pantograph is developed and installed on the prototype high speed train, Contact force prevents the pantograph from separating from the catenary. However, excessive contact force causes rapid erosion of catenary. The contact force can be divided into lift force and spring force. Contact force measurement is conducted while the train runs on the test track. The lift force is measured by the load cell on the roof separately and combined with the spring force of pan-head to form the contact force. Measured results show that the contact force of the pantograph of Korean High Speed Train is below the upper limit regulated by the high speed train standards. The contact force measuring system provides data to evaluate safety of the catenary system.

  • PDF

A DEVELOPMENT OF INTELLIGENT CONSTRUCTION LIFT-CAR TOOLKIT DEVICE FOR CONSTRUCTION VERTICAL LOGISTICS MANAGEMENT

  • Chang-Yeon Cho;Soon-Wook Kwon;Tae-Hong Shin;Sang-Yoon Chin;Yea-Sang Kim;Joo-Hyung Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.242-249
    • /
    • 2009
  • High-rise construction sites, especially those situated in spatially constrained urban areas, have difficulties in timely delivery of materials. Modern techniques such as Just-in-time delivery, and use of information technology such as Project Management Information System (PMIS), are targeted to improve the efficiency of the logistics. Such IT-driven management techniques can be further benefited from state-of-the-art devices such as Radio Frequency Identification (RFID) tags and Ubiquitous Sensor Networks (USN), which has resulted in notable achievements in automated logistics management at the construction sites. Based on those achievements, this research develops USN hardware toolkits for construction lifts, which aims to be automated the vertical material delivery by sensing the material information and routing it automatically to the right place. The gathered information from the sensors can also be used for monitoring the overall status. The developed system will be tested in the actual high-rise construction sites to assess the system's feasibility. The proposed system is being implemented using Zigbee communication modules and RFID sensor networks which will communicate with the intelligent palette system (previously developed by the authors). To support the system, a lift-mountable intelligent toolkit is under development. Its feasibility test will be conducted by applying the implemented system to a test bed and then analyzing efficiency of the system and the toolkit. The collected test data will be provided as a basis of autonomous vertical transport equipment development. From this research, efficient management of the material lift is expected with increased accuracy, as well as better management of overall construction schedule benefited from the system. Further research will be expected to develop a smart construction lift, which will eliminate the need for human supervision, thus enabling a real 'autonomous' operation of the system.

  • PDF

A Study on Loading/Unloading Methods for High-Speed Container Loading/Unloading System (고속 컨테이너 하역시스템의 하역방법에 관한 연구)

  • 박경택;김선호;김두형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10a
    • /
    • pp.167-174
    • /
    • 1998
  • Recently several researches of high speed container ship and loading system are mainly accomplished in U.S.A. and Japan. Its shipping service is not realized but it is realized in near future. To effective use of the feature and efficiency of them, quay, loading/unloading. yard operation system, port management system and connection transport system must be well integrated and operated. Specially, loading /unloading speed of container crane is important for making effective use of them. To speed up loading/unloading system, RO-RO and LO-LO methods that are mostly exclusive system are studied on the container crane with special structure and mechanism to handle individual container or bundle of containers. In this paper these methods are shown. When new high speed loading system of container is desighed, the realistic constrains must be considered.

  • PDF

A Study on the Development of Wind Turbine using the lift and drag for the Offshore (양력 및 항력 조합형 해상용 풍력발전기 개발에 관한 연구)

  • Kim, Namhun;Lee, Byeongseong;Yoon, Yangil;Oh, Jinseok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.183.3-183.3
    • /
    • 2010
  • This is the research of wind turbine that is designed to supply power to offshore buoy system. In order to reach maximum efficiency in limited space, vertical axis wind turbine was used. Vertical axis wind turbine system that was applied in this research has the form of lift and drag blade combined to achieve high efficiency at both high and low speed. In addition, support system was designed and developed to suit the offshore condition.

  • PDF

A Preliminary Study to Apply Group Control System to Lifts for High-rise Construction (초고층 공사 리프트의 그룹제어 시스템 적용을 위한 기초 연구)

  • Kim, Taehoon;Lim, Hyunsu;Kim, Chang-Won;Kim, Seung Woo;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.260-261
    • /
    • 2017
  • The objective of this study is to propose the basic design plan of system by comparing and analyzing application environment of lift and elevator group control system, as preliminary study for the application of group control system to lifts for high-rise construction. The basic design plan is suggested in terms of group control algorithm, hall call system type, operation information recording device, information communication method, and operation method. The results of this study can be used as basic data for software and hardware design for application of group control technology of lifts for super tall building construction and ultimately contribute to improve the operation efficiency of lift for high-rise construction.

  • PDF

Supermaneuverability of High Performance Combat Aircraft (고성능 전투기의 초기동성)

  • 손명환;백승욱;이기영
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.40-51
    • /
    • 1999
  • This paper reviews the combat survivability and supermaneuverbility which are principal factors in current and future high performance combat aircraft design. First of all, the fighter agility evaluation factors were presented. And then, emphasis was put on technologies associated with supermaneuverbility, such as vortex lift, high angle of attack aerodynamics, thrust vectoring and control system technologies that integrate each technology. The advanced nations' supermaneuverbility R/D programs were introduced as well.

  • PDF

A Study on the Analysis of Torsional Vibration of Branched Shafting System for Propulsion and Lift in Air Cushion Vehicle (공기부양선의 추진 및 부양축계 비틀림진동 해석 연구)

  • Son, Seon-Tae;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.335-342
    • /
    • 2007
  • A propulsion and lift shafting system in an air cushion vehicle is flexible multi-elements system which consists of two aeroderivative gas turbines with own bevel gears, four stage lift fan reduction gear, two stage propulsion reduction gear air propellers and high capacity of lifting fans. In addition, the system includes the multi-branched shafting with multi-gas turbine engines and thin walled shaft with flexible coupling. Such a branched shafting system has very intricate vibrating characteristics and especially, the thin walled shaft with flexible couplings can lower the torsional natural frequencies of shafting system to the extent that causes a resonance in the range of operating revolution. In this study, to evaluate vibrational characteristics some analytical methods for the propulsion and lift shafting system are studied. The analysis, including natural frequencies and mode shapes, for five operation cases of the system is conducted using ANSYS code with a equivalent mass-elastic model.