• 제목/요약/키워드: High-frequency switching converter

검색결과 552건 처리시간 0.022초

새로운 고효율 계통연계 1kW 연료전지용 PCS (A Noval High Efficiency Grid Connected 1kW PCS for Fuel Cell)

  • 김태진
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.417-422
    • /
    • 2008
  • In this paper, a novel DC/DC low-voltage high-current converter circuit is proposed to improve the efficiency of power converter used in the grid-connected fuel-cell generator system. We proposed a novel high efficiency grid-connected power conditioning system for RPG fuel cell. On the result of that, the loss of system was decreased rapidly by driving stack within the condition of maximum efficiency. The peak currents of the current-type inductor and the transformer's coil are reduced by synchronizing switching frequency of Buck-type converter is increased twice as the Push-Pull converter's switching frequency. The novel structure of DC/DC converter is able to realize ZVS-ZCS in fuel-cell system is proposed. The proposed switching component of Push-Pull converter has the ZVS and ZCS function by using the circuit of new passive clamp.

단상 컨버터의 부분공진 회로 (Single-Phase converter with partial resonant circuit)

  • 이현우;곽동걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 정기총회 및 추계학술대회 논문집 학회본부
    • /
    • pp.129-131
    • /
    • 1993
  • Power conversion system of high performance requires high switching frequency power converter. In order to minimize commutation stress and switching losses, in this paper, AC-DC converter is embedded a partial resonant DC-Link circuit with the object of ZVCS(zero voltage switching and zero current switching). The partial resonant occurs just before converter switch operates. Thus, VA ratings of the elements and their dissipations due to effective series resistance (ESR) are very low. Some simulative results on computer are included to confirm the validity of the analytical results.

  • PDF

GaN, Cool MOS, SiC MOSFET을 이용한 DC-DC 승압 컨버터의 효율 특성 (Efficiency Characteristics of DC-DC Boost Converter Using GaN, Cool MOS, and SiC MOSFET)

  • 김정규;양오
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.49-54
    • /
    • 2017
  • In this paper, recent researches on new and renewable energy have been conducted due to problems such as energy exhaustion and environmental pollution, and new researches on high efficiency and high speed switching are needed. Therefore, we compared the efficiency by using high speed switching devices instead of IGBT which can't be used in high speed switching. The experiment was performed theoretically by applying the same parameters of the high speed switching devices which are the Cool MOS of Infineon Co., SiC C3M of Cree, and GaN FET device of Transform, by implementing the DC-DC boost converter and measuring the actual efficiency for output power and frequency. As a result, the GaN FET showed good efficiency at all switching frequency and output power.

  • PDF

단일 펄스 소프트 스위칭을 이용한 고역률 고효율 DC-DC 컨버터 (High Power Factor and High Efficiency DC-DC Converter using Single-Pulse Soft-Switching)

  • 정상화;권순걸;서기영;이현우;곽동걸;김영철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1148-1150
    • /
    • 2003
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. To improved these, a large number of soft switching topologies included a resonant circuit has been prosed. But these circuits increase number of switch in circuit and complicate sequence of switching operation. In this paper, the authors propose a high power factor and high efficiency DC-DC converter using single-pulse soft switching by partial resonant switching node. The switching devices in a prosed circuit are operated with soft switching by the partial resonant method, that is, Partial Resonant Switch Mode Power Converter. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. The result is that the switching loss is very low and the efficiency of system is high. Also the proposed converter is deemed the most suitable for high power applications where the power switching devices are used. Some simulative results on computer results are included to confirm the validity of the analytical results.

  • PDF

고주파 소프트 스위칭 Forward DC/DC 컨버터 (High Frequency Soft Switching Forward DC/DC Converter)

  • 김은수;최해영;조기연;김윤호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.409-412
    • /
    • 1998
  • In this paper, an improved soft switching forward dc/dc converter is proposed. The proposed converter is constructed by using non-dissipate snubbers in parallel with the main switch and output diode of the conventional forward converter. Due to use of the non-dissipative snubbers, the proposed converter achieves zero-voltage switching for all switching devices and output diodes without switching losses. The complete operating principles and experimental results will be presented.

  • PDF

스위칭전원의 안정도 향상에 관한 연구 -고주파 직렬공진형 컨버터를 중심으로- (A Study on the Stability Improvement of the Switching Power Supplies - Case of the High Frequency Series Resonant Converter)

  • 이윤종;김능수
    • 한국안전학회지
    • /
    • 제3권1호
    • /
    • pp.21-29
    • /
    • 1988
  • Conventional pwm switching power supply have the disadvantage some aspects of size, light weight, noise and system stability. High frequency Series Resonant Converter (SRC), described in this paper, almost improve above disadvantages. We use the state plane technique as analysis method. This technique is powerful tool which can clearly analyze the peak stress of the state variables inside the converter, Here, we can define each operation mode from frequency ratio Fsn, switching frequency to resonant frequency, and we analyze the output performance in each operation mode. To verify the theoretical analysis, we compose the actual converter, and the experimental results are compared with analysis.

  • PDF

Characteristics of Non-Isolated OSAKA Converter -Characteristics of Three-Phase Soft-Switching Power Factor Corrected Converter for Large Scale Power Without Three-Phase Transformer-

  • Taniguchi, Katsunori;Shimomori, Wataru;Lee, Hyun-Woo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1383-1386
    • /
    • 2005
  • Non-isolated OSAKA Converter, which removes a three-phase transformer, is described in this paper. The converter switches once in every half cycle of an AC commercial power source. Therefore, it can solve many problems caused by the high frequency operation. The proposed converter achieves the soft-switching operation and the EMI noise can be reduced. In this circuit, the resonant capacitor, which is used for the soft-switching operation, is utilized for the improvement of an input current waveform. To achieve low cost and compact structure, non-isolated OSAKA converter removes a three-phase transformer of the OSAKA converter. By removing the three-phase transformer, three phase currents occur the interferences each other. To avoid the interference, a new switching method for non-isolated OSAKA converter is preposed. The converter can be constructed by the low-speed large power devices. The converter generates the low distorted input current waveforms with high power factor.

  • PDF

Design of the power generator system for photovoltaic modules

  • Park, Sung-Joon
    • 전기전자학회논문지
    • /
    • 제12권4호
    • /
    • pp.239-245
    • /
    • 2008
  • In this paper, a dc-dc power converter scheme with the FPGA based technology is proposed to apply for solar power system which has many features such as the good waveform, high efficiency, low switching losses, and low acoustic noises. The circuit configuration is designed by the conventional control type converter circuit using the isolated dc power supply. This new scheme can be more widely used for industrial power conversion system and many other purposes. Also, I proposed an efficient photovoltaic power interface circuit incorporated with a FPGA based DC-DC converter and a sine-pwm control method full-bridge inverter. The FPGA based DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. As a result, we can get a 1.72% low THD in present state using linear control method. Moreover, we can use stepping control method, we can obtain the switching losses by Sp measured as 0.53W. This paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance.

  • PDF

The Dimmable Single-stage Asymmetrical LLC Resonant LED Driver with Low Voltage Stress Across Switching Devices

  • Kim, Seong-Ju;Kim, Young-Seok;Kim, Choon-Taek;Lee, Joon-Min;La, Jae-Du
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2031-2039
    • /
    • 2015
  • In the LED lighting industry, the dimming function in the LED lamp is required by demands of many consumers. To drive this LED lighting, various types of power converters have been applied. Among them, an LLC resonant converter could be applied for high power LED lighting because of its high efficiency and high power density, etc. The function of power factor correction (PFC) might be added to it. In this paper, a dimmable single-stage asymmetrical LLC resonant converter is proposed. The proposed converter performs both input-current harmonics reduction and PFC using the discontinuous conduction mode (DCM). Also, the lower voltage stress across switching devices as well as the zero voltage switching (ZVS) in switching devices is realized by the proposed topology. It can reduce cost and has high efficiency of the driver. In addition, the regulation of the output power by variable switching frequency can vary the brightness of a light. In the proposed converter, one of the attractive advantages doesn’t need any extra control circuits for the dimming function. To verify the performance of the proposed converter, simulation and experimental results from a 300W prototype are provided.

Back ground and frontier on Matrix Converter (PWM Cyclo-Converter) for new drive system in next generation

  • Koga, Takashi;Lee, Hyun-Woo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.200-207
    • /
    • 2003
  • Today we have excellent motor drive system using high frequency carrier PWM control voltage source inverter with vector control strategy. In the other hand, we have met serious problems caused by high frequency switching. PWM Cyclo-converter called Matrix converter is expected as the new strategy possible to improve these problems and add some more convenient features suitable for new drive system with system integration. In this paper, we will introduce the background of this development and features of this converter from our research, additionally introduce remarkable active promotions for this converter as a survey.

  • PDF