• Title/Summary/Keyword: High-frequency switching converter

Search Result 552, Processing Time 0.023 seconds

Implementation and Evaluation of Interleaved Boundary Conduction Mode Boost PFC Converter with Wide Band-Gap Switching Devices

  • Jang, Jinhaeng;Pidaparthy, Syam Kumar;Choi, Byungcho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.985-996
    • /
    • 2018
  • The implementation and performance evaluation of an interleaved boundary conduction mode (BCM) boost power factor correction (PFC) converter is presented in this paper by employing three wide band-gap switching devices: a super junction silicon (Si) MOSFET, a silicon carbide (SiC) MOSFET and a gallium nitride (GaN) high electron mobility transistor (HEMT). The practical considerations for adopting wide band-gap switching devices to BCM boost PFC converters are also addressed. These considerations include the gate drive circuit design and the PCB layout technique for the reliable and efficient operation of a GaN HEMT. In this paper it will be shown that the GaN HEMT exhibits the superior switching characteristics and pronounces its merits at high-frequency operations. The efficiency improvement with the GaN HEMT and its application potentials for high power density/low profile BCM boost PFC converters are demonstrated.

Simulation of three Phase PWM Boost converter (단상제어형 3상 PWM 승압용 컨버터의 시뮬레이션)

  • Kang, W.J.;Kim, S.D.;Chun, J.H.;Lee, K.S.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2668-2670
    • /
    • 1999
  • In the past, the PWM converter had a large switching loss by hard switching and difficult to high frequency operation. The resonance converter to decrease the switching loss and EMI is required the frequency control and needed to reduce the voltage or current stress at each parts. So, this paper propose the 3-phase boost converter and the method to compensated input power factor by control the amplitude - an instantaneous value of the DC inductor current -and control the switching frequency that a modulation error by the ripple of the DC inductor current. The proposed 3-phase PWM boost converter of single phase control type can takes higher capacity and compensate the power factor by using Feed back controller at each phase for the existing 3-phase bridge rectifier type. Moreover the 3-phase full bridge type using the rectifier at each 3-phase circuit will be small size reactor and compensate input power factor by minimize harmonic components of each phase.

  • PDF

A study of Single-phase Voltage Source PWM Converter for High Power Factor (고역률 제어를 위한 단산 전압원 PWM 컨버터에 관한 연구)

  • 류성식;손진근;정을기;김형원;전희종
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.362-365
    • /
    • 1999
  • In this paper, the method of reducing harmonics and correcting of power factor in single PWM converter associated with diode rectifier and boos converter is studied. The ac-dc converter in which the harmonic distortion in the input current is reduced using a third harmonic injected PWM is proposed. A lower switching power loss and easy configuration o control circuit are obtained by adopting discontinuous current mode. Simulation and experimental results of ac-dc converter with 5[KHz] switching frequency are presented and correction of power factor and reduction of total harmonic distortion was established.

  • PDF

Boost $1\Psi$ converter of high efficiency by partial resonant switching using lossless snubber (무손실 스너버를 이용한 부분공진 스위칭에 의한 고효율 승압형 단상 컨버터)

  • 서기영;곽동걸;전중함;이현우
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.315-322
    • /
    • 1998
  • Power conversion system must increase switching frequency in order to achieve small size, light weight and low noise. However, the switches of converter are subject to high switching power losses and switching stresses. As a result, the power system has a lower efficiency. In this paper, the authors propose an AC-DC boost converter of high efficiency by partial resonant switching mode. The switching devices in the proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Besides, by regenerating energy, that is charged in a loss less snubber condenser of a snubber adopted to a common circuit, toward an input source part, this circuit can get increased efficiency. as merit. The result is that the switching loss is very low, the efficiency and power factor of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

Zero-Voltage Zero-Current Switching Three Level DC/DC Converter (영전압.영전류 스위칭 3 레벨 DC/DC 컨버터)

  • 김은수
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.682-690
    • /
    • 2002
  • The conventional three-level high frequency phase-shifted dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval.. Due to this circulating current and RMS current stress, conduction losses of transformer and switching devices increases. To alleviate these problems, we propose an improved three-level Zero Voltage and Zero Current Switching (ZVZCS) dc/dc converter using a tapped inductor, a snubber capacitor and two snubber diodes attached at the secondary side of transformer. The proposed ZVZCS converter is verified on a 7㎾, 30KHz experimental prototype.

Reduction Harmonic of Auxiliary Block for High Speed Train (고속전철용 보조전원장치의 고조파저감)

  • 송상훈;김연충;원충연;최종목;기상우;배기훈
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.162-167
    • /
    • 1999
  • In Auxiliary block of High speed train Power factor correction and Harmonics reduction is very important issue for efficient energy transport. The GTO-equipped PWM converter is used for traction untill resently. but the rising power capability of IGBTs resently allows to build IGBT-equipped PWM converter with a considerably increases switching frequency. In this paper presents switching pattern, control method, operation mode and tuned filter to reduce dc link voltage ripple for paralleled converter.

  • PDF

Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1632-1642
    • /
    • 2014
  • This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at $V_{in}/2$ voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.

DSP(TMS320C40) Control of Three-phase PWM AC/DC Converter (TMS320C40을 이용한 3상 PWM AC/DC 컨버터 제어)

  • Byun, Young-Bok;Kim, Eun-Soo;Koo, Heun-Hoi;Joe, Kee-Yeon;Park, Sung-Jun;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.518-520
    • /
    • 1996
  • High frequency switching converters are becoming more popular because of several benefits which are essential in power conversion system. This paper introduces a high speed digital controller using TMS320C40 DSP chip which can be used for high frequency switching converters and demonstrates its performance by operating three-phase PWM AC/DC converter with unity power factor at 20kHz sampling frequency. TMS320C40 DSP chip operates with 40-ns instruction cycle times and is capable of 275 MOPS. The running time of real time control loop at the three-phase PWM AC/DC converter is $44.6{\mu}sec$.

  • PDF

Low price Fuel Cell Inverter System for 3[KW] Residential Power

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.61-72
    • /
    • 2007
  • This study proposed a high efficiency DC-DC converter with a new current doubler rectifier for fuel-cell systems for use with the Nexa(310-0027) PEMFC from the Ballard Co. The proposed high efficiency DC-DC converter for the fuel-cell system generated ZVS by applying partial resonance and using a phase shift PWM control method. Constantly switching frequency, loss of switching, peak current, and peak voltage were reduced by this system. In addition to this system, two inductors were attached to a rectifier circuit allowing it to be able to provide the direct current(DC) and DC voltage safely to a load with reduced ripple components. Also, by using the newly proposed current doubler rectifier, the high frequency DC-DC converter for the fuel cell system was capable of reaching a highest efficiency of 92[%] as compared to 88.3[%] efficiency in previous results, which means that efficiency increased 3.7[%]. The overall results were confirmed by a simulation and laboratory experiment.