• 제목/요약/키워드: High-energy milling

Search Result 297, Processing Time 0.034 seconds

Investigation on Size Distribution of Tungsten-based Alloy Particles with Solvent Viscosity During Ultrasonic Ball Milling Process (초음파 볼밀링 공정에 의한 용매 점도 특성에 따른 텅스텐계 합금 분쇄 거동)

  • Ryu, KeunHyuk;So, HyeongSub;Yun, JiSeok;Kim, InHo;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.201-207
    • /
    • 2019
  • Tungsten heavy alloys (W-Ni-Fe) play an important role in various industries because of their excellent mechanical properties, such as the excellent hardness of tungsten, low thermal expansion, corrosion resistance of nickel, and ductility of iron. In tungsten heavy alloys, tungsten nanoparticles allow the relatively low-temperature molding of high-melting-point tungsten and can improve densification. In this study, to improve the densification of tungsten heavy alloy, nanoparticles are manufactured by ultrasonic milling of metal oxide. The physical properties of the metal oxide and the solvent viscosity are selected as the main parameters. When the density is low and the Mohs hardness is high, the particle size distribution is relatively high. When the density is high and the Mohs hardness is low, the particle size distribution is relatively low. Additionally, the average particle size tends to decrease with increasing viscosity. Metal oxides prepared by ultrasonic milling in high-viscosity solvent show an average particle size of less than 300 nm based on the dynamic light scattering and scanning electron microscopy analysis. The effects of the physical properties of the metal oxide and the solvent viscosity on the pulverization are analyzed experimentally.

Improved Microstructural Homogeneity of Ni-BCY Cermets Membrane via High-Energy Milling (고에너지 밀링을 통한 Ni-BaCe0.9Y0.1O3-δ 서멧 멤브레인의 미세구조 균질성 향상)

  • Kim, Hyejin;Ahn, Kiyong;Kim, Boyoung;Lee, Jongheun;Chung, Yong-Chae;Kim, Hae-Ryoung;Lee, Jong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.648-653
    • /
    • 2012
  • Hybridization of dense ceramic membranes for hydrogen separation with an electronically conductive metallic phase is normally utilized to enhance the hydrogen permeation flux and thereby to increase the production efficiency of hydrogen. In this study, we developed a nickel and proton conducting oxide ($BaCe_{0.9}Y_{0.1}O_{3-{\delta}}$: BCY) based cermet (ceramic-metal composites) membrane. Focused on the general criteria in that the hydrogen permeation properties of a cermet membrane depend on its microstructural features, such as the grain size and the homogeneity of the mix, we tried to optimize the microstructure of Ni-BCY cermets by controlling the fabrication condition. The Ni-BCY composite powder was synthesized via a solid-state reaction using $2NiCO_3{\cdot}3Ni(OH)_2{\cdot}4H_2O$, $BaCeO_3$, $CeO_2$ and $Y_2O_3$ as a starting material. To optimize the mixing scale and homogeneity of the composite powder, we employed a high-energy milling process. With this high-energy milled composite powder, we could fabricate a fine-grained dense membrane with an excellent level of mixing homogeneity. This controlled Ni-BCY cermet membrane showed higher hydrogen permeability compared to uncontrolled Ni-BCY cermets created with a conventionally ball-milled composite powder.

Synthesis and Microstructure of Cu/VSZ Composite for High Temperature Electrolysis Cathode (고온수전해 수소극용 Cu/YSZ 복합체의 제조 및 미세구조)

  • Kim, Jong-Min;Jung, Hang-Chul;Kang, An-Soo;Hong, Hyun-Seon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.238-243
    • /
    • 2007
  • The composite powder of Cu and YSZ was synthesized for a high temperature electrolysis cathode by mechanical milling. The average Cu particle size was reduced to 5 micro-meter from 48 micro-meter after the mechanical ball milling. The composite powder showed that Cu particles were uniformly covered with finer YSZ particles. Sub-micron sized pores were uniformly dispersed in the Cu/YSZ composit. Homogeneously-dispersed fine YSZ in the composite is expected to the increase in triple phase boundaries, thereby leading the enhanced performance of cathode.

High Temperature properties of Mechanically Alloyed Al-Ni System (기계적 합금법으로 제조된 Al-Ni 합금계의 고온특성)

  • 김유영
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 1994
  • Mechanical alloying process of Al-8wt.% Ni powder was investigated for the various milling time in order to get the steady state powder. High temperature deformation behaviors of the sintered specimens were investigated by activation energy calculated after high temperature compression tests at the strain rates of 2.5$\times$10-3 s-1, 2.5$\times$10-2 s-1 and 2.5$\times$10-1 s-1 at the temperature range between $350^{\circ}C$ and $450^{\circ}C$. The steady state was obtained after 1000 minutes of milling with the PCA of 1.5 wt.% stearic acid under the condition of grinding media to powder weight ratio of 50 : 1 and impeller rotating speed of 300 rpm. True activation energy of Al-8wt.% Fe alloy was estimated to be 181 kJ/mole at the temperature range of 350~ $400^{\circ}C$ and 265 kJ/mole at the range of 400~$450^{\circ}C$.

  • PDF

Study for the Development of Fe-NbC Composites by Advanced PM Techniques

  • Gordo, E.;Gomez, B.;Gonzalez, R.;Ruiz-Navas, E.M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.118-119
    • /
    • 2006
  • The development of Fe-based metal matrix composites (MMCs) with high content of hard phase has been approached by combining the use of advanced powder metallurgy techniques like high-energy milling (HEM), cold isostatic pressing (CIP) and vacuum sinterings. A 30% vol. of NbC particles was mixed with Fe powder by HEM in a planetary mill during 10h, characteristing the powder by the observation of morphology and microstructure by scanning electron microscopy (SEM). After of sintering process the variation of density, hardness,carbon content and the microstructural changes observed, permits to find the optimal conditions of processing. Afterwards, a heat treatment study was performed to study the hardenability of the composite.

  • PDF

Polyethylene-Based Dielectric Composites Containing Polyhedral Oligomeric SilSesquioxanes Obtained by Ball Milling

  • Guo, Meng;Frehchette, Michel;David, Eric;Demarquette, Nicole Raymonde
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.53-61
    • /
    • 2015
  • High-energy ball milling was tested as a method for producing Ultra High Molecular Weight Polyethylene (UHMWPE)- based nanodielectrics containing 1 wt% and 5 wt% OctaIsoButylPOSS (OibPOSS). Qualitative and quantitative evaluations were used to explore the compatibility between OibPOSS and PE. Several ball milling variables were optimized in a bid to achieve UHMWPE/OibPOSS nanodielectrics. The morphology, as well as the thermal and the dielectric properties of the samples, were characterized by scanning electron microscopy, thermogravimetric analysis, broadband dielectric spectroscopy, and progressive-stress breakdown tests. The results showed that (i) ball milling was an effective method for producing UHMWPE/OibPOSS dielectric composites, but appeared ineffective in dispersing OibPOSS at the nanoscale, and (ii) the resulting UHMWPE/OibPOSS dielectric composites presented thermal and dielectric properties similar to those of neat UHMWPE.

Synthesis of Ni Silicides by Mechnical Alloying (기계적 합금화에 의한 Ni Silicide 분말의 합성)

  • 변창섭
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • Nickel silicides ($Ni_5$Si$_2$, Ni$_2$Si and NiSi) have been synthesized by mechanical alloying (MA) of Ni-27.9at.9at%Si, Ni-33.3at% and Ni-50.0at% powder mixtures, respectively. From in situ thermal analysis, eash citical milling period for the formation of the three phases was observed to be 40.2, 34.9 and 57.5 min, at which there was a rapid increase in temperature. This indicates that rapid, self-propagating high-temperature synthesis (SHS) reactions were observed to produce the three phases during room-temperature high-energy ball milling of elemental powders. Each Ni silicide, Ni and Si, however, coexisted for an extended milling time even after the critical milling period. The powders mechanically alloyed after the critical period showed the rapid increase in microhardness. The Hv values were found to be higher than 1000kgf/mm$^2$. The formation of nickel silicides by mechanical alloying and the relevant reaction rates appeared to be influenced by the critical milling period and the heat of formation of the products involved ($Ni_5$Si$_2$$\rightarrow$-43.1kJ/mol.at., Ni$_2$Si$\rightarrow$-47.6kJ/mol.at., NiSi$\rightarrow$-42.4kJ/mol.at).

  • PDF

Effect of Milling Time on Pore Size and Distribution of Ti-Nb-Zr Biomaterials with Space Holder Consolidated by Spark Plasma Sintering

  • Kim, Dong-Gun;Woo, Kee-Do;Kang, Dong-Soo;Lee, Tack
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.111-115
    • /
    • 2014
  • Titanium and its alloys are useful for implant materials. In this study, porous Ti-Nb-Zr biomaterials were successfully synthesized by powder metallurgy using a $NH_4HCO_3$ as space holder and $TiH_2$ as foaming agent. Consolidation of powder was accomplished by spark plasma sintering process(SPS) at $850^{\circ}C$ under 30 MPa condition. The effect of high energy milling time on pore size and distribution in Ti-Nb-Zr alloys with space holder($NH_4HCO_3$) was investigated by optical microscope(OM), scanning electron microscope(SEM) & energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD). Microstructure observation revealed that, a lot of pores were uniformly distributed in the Ti-Nb-Zr alloys as size of about $30-100{\mu}m$ using mixed powder and milled powders. In addition, the pore ratio was found to be about 5-20% by image analysis, using an image analyzer(Image Pro Plus). Furthermore, the physical properties of specimens were improved with increasing milling time as results of hardness, relative density, compressive strength and Young's modulus. Particularly Young's modulus of the sintered alloy using 4h milled powder reached 52 GPa which is similar to bone elastic modulus.

Effects of Mechanically Activated Milling and Calcination Process on the Phase Stability and Particle Morphology of Monoclinic Zirconia Synthesized by Hydrolysis of ZrOCl2 Solution

  • Lee, Young-Geun;Ur, Soon-Chul;Mahmud, Iqbal;Yoon, Man-Soon
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.543-549
    • /
    • 2013
  • The purpose of this paper was to investigate the effect of a high-energy milling (HEM) process on the particle morphology and the correlation between a thermal treatment and tetragonal/monoclinic nanostructured zirconia powders obtained by a precipitation process. To eliminate chloride residue ions from hydrous zirconia, a modified washing method was used. It was found that the used washing method was effective in removing the chloride from the precipitated gel. In order to investigate the effect of a pre-milling process on the particle morphology of the precipitate, dried $Zr(OH)_4$ was milled using a HEM machine with distilled water. The particle size of the $Zr(OH)_4$ powder exposed to HEM reduced to 100~150 nm, whereas that of fresh $Zr(OH)_4$ powder without a pre-milling process had a large and irregular size of 100 nm~1.5 ${\mu}m$. Additionally, modified heat treatment process was proposed to achieve nano-sized zirconia having a pure monoclinic phase. It was evident that two-step calcining process was effective in perfectly eliminating the tetragonal phase, having a small average particle of ~100 nm with good uniformity compared to the sample calcined by a single-step process, showing a large average particle size of ~300 nm with an irregular particle shape and a broad particle size distribution. The modified method is considered to be a promising process for nano-sized zirconia having a fully monoclinic phase.

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.