• Title/Summary/Keyword: High-efficiency Modules

Search Result 191, Processing Time 0.026 seconds

An Experimental Study of a Water Type Glazed PV/Thermal Combined Collector Module (액체식 Glazed PVT 복합모듈의 성능실험 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal (PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously. In general, two types of PVT can be distinguished : glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type PVT combined module, glass-covered, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.6% average and its PV efficiency was about 10.0% average, both depending on solar radiation, inlet water temperature and ambient temperature.

An Experimental Comparison Study of PVT Water and PVT Air Modules for Heat and Power Co-Generation (태양 열 전기 복합생산 PVT Water and PVT Air 모듈의 실험적 성능비교 연구)

  • Lee, Kwang-Seob;Putrayudha S., Andrew;Kang, Eun-Chul;Lee, Euy-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.559-564
    • /
    • 2014
  • The development of photovoltaic-thermal (PVT) technology has been introduced in recent years specifically to increase PV efficiency. One of the characteristics of PV systems is that the electricity generation increases as the solar radiation increases whereas the efficiency decreases because of high surface temperatures. Using a photovoltaic-thermal system, the surface temperature can be decreased by capturing the excess heat and the efficiency can be increased due to these characteristics. In this paper, three cases are introduced : 1) PV_r as the reference case, 2) PVT_a, which uses air as a heat source, and 3) PVT_w, which uses water as a heat source. Experiments were performed, analyzed, and compared to examine the effect of the PVT type on the efficiency of the system. The results showed that ETC($%/^{\circ}C$) efficiency of the PVT cases was increased versus the reference case due to decreasing surface temperature. Total efficiencies, which are electrical efficiency and thermal efficiency, for each PVT are tested and found to be 12.22% for PV_r, 29.50% for PVT_a, and 68.74% for PVT_w.

Development of Integrated Design System for High Temperature, High Pressure Parts for Chemical Plants (화학플랜트 고온고압부 설계 효율화를 위한 일관시스템 구축)

  • Jeong Dong Gwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 1998
  • In order to increase design efficiency, it is required to design steam boiler pressure parts systematically considering daily start-stop operation and load variation. The objective of this research is to develope an integrated system for increasing design efficiency of boiler pressure parts. The developed system consists of three program modules: (1) flexibility design module for the header stub considering fatigue life, (2) fatigue limit calculation and life evaluation module for the thick-walled boiler pressure part under cyclic operation using TRD301 code, (3) drawing automation module for the header and drum producing design drawings, welding data and bill of materials.

  • PDF

A Fundamental Study of BIPV System Functioned as Solar Collector for Building Application (건물 적용을 위한 태양열 집열기 기능을 갖는 BIPV 시스템의 기초적 연구)

  • Min, Sung-Hye;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2007
  • Perimeter zone is one of the weakest area in buildings and it makes an increase of heating and cooling loads, in addition to condensation or discomfort with cold-draft to residents in winter. Because of this, it needs to be reinforced by active systems. However, they use fossil fuel, and ultimately greenhouse effect is urged. Thus, we proposed BIPV system functioned as solar collector which can substitute active system. As an fundamental stage, heat balance equation in steady-state by Fortran was used not only, in winter for pre-heating effect and electric power capacity during the day, but also in summer, for the latter during the day and sky radiation effect during the night. Especially, we should have considered shading on PV by IES Suncast, since even a little bit of it makes the efficiency too low for the PV modules to work. As a result, in summer day, the PV panel should be tiled in 70 degrees to gain the most electric power. Moreover, we could verify that this model makes higher temperature and heat flux under 0.02 m/s. On the other hand, the PV had the high efficiency with high velocity because of cooling effect behind the PV. Therefore, we should regard the air current distribution later on.

The Invert for ozone generator by mixed square_wave and PWM (구형파 및 PWM 인버터 조합에 의한 오존발생용 인버터)

  • Park Noh-Sik;Park Sung-Jun;Won Tae-Hyun;Ahn Jin-Woo;Kim Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1193-1195
    • /
    • 2004
  • Ozone gas is one of the strongest oxidizing and bleaching agents which leave no residues harmful to the global environment. In recent years, the ozone generator has been widely utilized, However, it has been known that a broader application of ozone is hindered primarily because of its low efficiency of generation. Thus, it is more indispensable to improve actual system efficiency of the silent discharge type ozonizer using high frequency inverter. This paper presents a multi level resonant ozone power regulation by association of high frequency transformers and full bridge invert. And proposed resonant inverter system can generate continuous output voltage. can control linearly quantity of ozone gas. This invert that add PWM forms within square forms of output voltage about one level range. The power regulation characteristics and operating performances of silent discharge (SD)type ozone generating tube load driven by this load proposed inverter using FET modules are illustrated from a practical point of view, which can operate under stable conditions of basic level and PWM hybrid control strategy implemented DSP(2406). The effectoveness of propsed invert type ozonizer is proved by experiment results.

  • PDF

Design of Power Factor Correction High Efficiency PWM Single-Phase Rectifier (역률보상 고효율 PWM 단상 정류기의 설계)

  • Choi, Seong-Hun;Kim, In-Dong;Nho, Eui-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.540-548
    • /
    • 2007
  • The parer proposes a power factor correction high efficiency PWM single-phase rectifier. Its good characteristics such as simple PWM control, low switch stress, and low VAR rating of commutation circuits make the proposed rectifier very suitable for various unidirectional power applications. In addition, the proposed rectifier consists of three boost-converter-type IGBT modules with the switching devices located at the bottom leg of the rectifier scheme, which also enables the use of the same power supply in both control and gate driver, thus resulting in simple control and power circuit structure. The detailed principle of operation and experimental results are also included. In particular, the design guide line is also suggested to make the circuit design of the proposed rectifier easy and fast.

Separation and Characterization of Crystalline Silicon Solar Cell by Laser Scribing (레이저 스크라이빙에 의한 결정질 실리콘 태양전지의 분할 및 특성 분석)

  • Park, Ji Su;Oh, Won Je;Lee, Soo Ho;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.3
    • /
    • pp.187-191
    • /
    • 2019
  • Advances in laser technology have enabled ultra-high-speed ultra-precise processing, thus expanding potential applications to the semiconductor, medical, and photovoltaic industries. In particular, laser scribing technology has been applied to the production of shingled solar modules. In this work, we analyze the effect of laser scribing conditions, e.g., scribing depth, on the characteristics of the resulting divided solar cells. When the scribing depth was greater than $100{\mu}m$, the solar cells were well separated. In addition, the desired scribing depths were reached in fewer scans when the laser spot overlap was 100%. The efficiency of the divided cells decreased due to the high series resistance at scribing depths of less than $100{\mu}m$. However, at scribing depths of approximately $100{\mu}m$, the series resistance was low and efficiency reduction was minimized.

Advanced Induction Heating Equipment using Dual Mode PWM-PDM Controlled Series Load Resonant Tank High Frequency Inverters

  • Fathy, Khairy;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.246-256
    • /
    • 2007
  • In this paper, a novel type auxiliary active edge resonant snubber assisted zero current soft switching pulse modulation Single-Ended Push Pull (SEPP) series load resonant inverter using IGBT power modules is proposed for cost effective consumer high-frequency induction heating (IH) appliances. Its operating principle in steady state is described by using each switching mode's equivalent operating circuits. The new multi resonant high-frequency inverter with series load resonance and edge resonance can regulate its high frequency output power under a condition of a constant frequency zero current soft switching (ZCS) commutation principle on the basis of the asymmetrical pulse width modulation (PWM) control scheme. Brand-new consumer IH products using the proposed ZCS-PWM series load resonant SEPP high-frequency inverter using IGBTs is evaluated and discussed as compared with conventional high-frequency inverters on the basis of experimental results. In order to extend ZCS operation ranges under a low power setting PWM as well as to improve efficiency, the high frequency pulse density modulation (PDM) strategy is demonstrated for high frequency multi-resonant inverters. Its practical effectiveness is substantially proved from an application point of view.

High Efficient Inductive Power Supply System Implemented for On Line Electric Vehicles

  • Huh, Jin;Park, Eun-Ha;Jung, Gu-Ho;Rim, Chun-Taek
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.105-110
    • /
    • 2009
  • The On Line Electric Vehicles(OLEV) that can pick up inductive power from underground coils on driving with high efficiency have been developed this year, and is now proposed in this paper. The IPS(Inductive Power Supply) system consists of power supply inverters, power supply rails, pick up modules, and a regulator. There are 3 generations of IPS have been developed so far, and the $4^{th}$ generation IPS is being developed. The $1^{st}$ generation has been demonstrated this Feb. 27, which is equipped with mechanically auto tracking pick-up module with 1cm air gap, and showed 80% power efficiency. The $2^{nd}$ generation IPS applied to an 120kW (average)/240kW(peak) motor powered electric bus has 17cm air gap with 72% power efficiency. For the $2^{nd}$ generation IPS, the Power supply inverter has 440V, 3phase input and 200A @ 20kHz output. The test power supply rail of 240m long is segmented by 60m each, where newly developed core structure and power cable are constructed under the road covered with asphalt of 5cm thickness. The pick-up modules which consist of core, winding wire, and rectifiers are fixed to the bottom of the bus which can carry more than 40 passengers and can pick up max. 60kW. To remove parasitic component and to transfer maximum power between them resonant circuit topology is applied to the primary and secondary sides. The EMF level is below 62.5mG at 1.75m from the center of the road to meet the regulation. Several effective ways of reducing EMF levels have been developed. In addition, effective ways to solve problems related high frequency power cables buried in ground and it's proof from soil have been studied also. This development shows that the IPS system is capable of supplying enough power to the pick-up of OLEV and can reduce battery size, weight and cost, which means the IPS with OLEV is one of the best candidate for EV.

  • PDF

Design of the power generator system for photovoltaic modules

  • Park, Sung-Joon
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.239-245
    • /
    • 2008
  • In this paper, a dc-dc power converter scheme with the FPGA based technology is proposed to apply for solar power system which has many features such as the good waveform, high efficiency, low switching losses, and low acoustic noises. The circuit configuration is designed by the conventional control type converter circuit using the isolated dc power supply. This new scheme can be more widely used for industrial power conversion system and many other purposes. Also, I proposed an efficient photovoltaic power interface circuit incorporated with a FPGA based DC-DC converter and a sine-pwm control method full-bridge inverter. The FPGA based DC-DC converter operates at high switching frequency to make the output current a sine wave, whereas the full-bridge inverter operates at low switching frequency which is determined by the ac frequency. As a result, we can get a 1.72% low THD in present state using linear control method. Moreover, we can use stepping control method, we can obtain the switching losses by Sp measured as 0.53W. This paper presents the design of a single-phase photovoltaic inverter model and the simulation of its performance.

  • PDF