• Title/Summary/Keyword: High-efficiency Modules

Search Result 189, Processing Time 0.024 seconds

Pilot scale membrane separation of plating wastewater by nanofiltration and reverse osmosis

  • Jung, Jaehyun;Shin, Bora;Lee, Jae Woo;Park, Ki Young;Won, Seyeon;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.239-244
    • /
    • 2019
  • Plating wastewater containing various heavy metals can be produced by several industries. Specifically, we focused on the removal of copper (Cu2+) and nickel (Ni+) ions from the plating wastewater because all these ions are strictly regulated when discharged into watershed in Korea. The application of both nanofiltration (NF) and reverse osmosis (RO) technologies for the treatment of wastewater containing copper and nickel ions to reduce fresh water consumption and environmental degradation was investigated. In this work, the removal of copper (Cu2+) and nickel (Ni+) ions from synthetic water was studied on pilot scale remove by before using two commercial nanofiltration (NF) and reverse osmosis(RO) spiral-wound membrane modules (NE2521-90 and RE2521-FEN by Toray Chemical). The influence of main operating parameters such as feed concentration on the heavy metals rejection and permeate flux of both membranes, was investigated. Synthetic plating wastewater samples containing copper ($Cu^{2+}$) and nickel ($Ni^{2+}$) ions at various concentrations(1, 20, 100, 400 mg/L) were prepared and subjected to treatment by NF and RO in the pilot plant. The results showed that NF, RO process, with 98% and 99% removal for copper and nickel, respectively, could achieve high removal efficiency of the heavy metals.

Critical buckling moment of functionally graded tapered mono-symmetric I-beam

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.599-614
    • /
    • 2021
  • This study deals with the Lateral-Torsional Buckling (LTB) of a mono-symmetric tapered I-beam, in which the cross-section is varying longitudinally. To obtain the buckling moment, two concentrated bending moments should be applied at the two ends of the structure. This structure is made of Functionally Graded Material (FGM). The Young's and shear modules change linearly along the longitudinal direction of the beam. It is considered that this tapered beam is laterally restrained continuously, by using torsional springs. Furthermore, two rotational bending springs are employed at the two structural ends. To achieve the buckling moment, Ritz solution method is utilized. The response of critical buckling moment of the beam is obtained by minimizing the total potential energy relation. The lateral and torsional displacement fields of the beam are interpolated by harmonic functions. These functions satisfy the boundary conditions. Two different support conditions are considered in this study. The obtained formulation is validated by solving benchmark problems. Moreover, some numerical studies are implemented to show the accuracy, efficiency and high performance of the proposed formulation.

Evaluation of Minimum Detectable Activity for Underwater Radiation Monitoring System (수중 방사선 모니터링 시스템의 성능평가를 위한 수중 내 최소검출가능농도 산출)

  • Jangguen Park;Sung-Hee Jung;Daemin Oh;Jinho Moon
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.219-224
    • /
    • 2023
  • A high-efficiency underwater radiation monitoring system, HydroGamma, has been developed for detecting 137Cs and 131I in the event of waterborne radiation contamination. The system consists of a 3-inch NaI (Tl) detector, solar panels for power supply, data acquisition and transmission modules, and batteries. HydroGamma also includes a 40K calibration source for remote performance evaluation and energy calibration. In this study, some simulations and experiments were carried out to evaluate the minimum detectable activities (MDA) of HydroGamma. We installed the HydroGamma at Tapjeongho Lake in Nonsan-si and acquired background data since MDA is calculated based on the experimental background data. The results show that the minimum detectable activities for 137Cs and 131I were 1.78Bq L-1 and 1.81Bq L-1, respectively even though the gamma rays emitted from 40K(1,460 keV) affect the minimum detectable activities for them.

Development of supporting platform for the fine flow characteristics of reactor core

  • Hao Qian;Guangliang Chen;Lei Li;Lixuan Zhang;Xinli Yin;Hanqi Zhang;Shaomin Su
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1687-1697
    • /
    • 2024
  • This study presents the Supporting platform for reactor fine flow characteristics calculation and analysis (Cilian platform), a user-friendly tool that supports the analysis and optimization of pressurized water reactor (PWR) cores with mixing vanes using computational fluid dynamics (CFD) computing. The Cilian platform allows for easy creation and optimization of PWR's main CFD calculation schemes and autonomously manages CFD calculation and analysis of PWR cores, reducing the need for human and computational resources. The platform's key features enable efficient simulation, rapid solution design, automatic calculation of core scheme options, and streamlined data extraction and processing techniques. The Cilian platform's capability to call external CFD software reduces the development time and cost while improving the accuracy and reliability of the results. In conclusion, the Cilian platform exemplifies an innovative solution for efficient computational fluid dynamics analysis of pressurized water reactor (PWR) cores. It holds great promise for driving advancements in nuclear power technology, enhancing the safety, efficiency, and cost-effectiveness of nuclear reactors. The platform adopts a modular design methodology, enabling the swift and accurate computation and analysis of diverse flow regions within core components. This design approach facilitates the seamless integration of multiple computational modules across various reactor types, providing a high degree of flexibility and reusability.

Soft Switching Control Method for Photovoltaic AC Module Flyback Inverter using Synchronous Rectifier (동기 정류기를 이용한 태양광 모듈용 플라이백 인버터 소프트 스위칭 제어 기법)

  • Jang, Jin-Woo;Kim, Young-Ho;Choi, Bong-Yeon;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.312-321
    • /
    • 2013
  • In this paper, high efficiency control method for flyback inverter with synchronous rectifier(SR) based on photovoltaic AC modules is proposed. In this control method, the operation of SR is classified according to the voltage spike across main switch SP. When the voltage spike across SP is lower than the rating voltage of SP, the operation of active clamp circuit is interrupted for reducing the switching loss of auxiliary switch. In this time, the SR is operated for soft-switching of SP. When the voltage spike across Sp is higher than the rating voltage of SP, the operation of active circuit is activated for reducing the voltage spike. The SR is operated for reducing the conduction loss of secondary output diode. Thus, a switching loss of the main switch can be reduced in low power region, and weighted-efficiency can be improved. A theoretical analysis and the design principle of the proposed method are provided. And validity is confirmed through simulation and experimental results.

A Study on the Production Planning and Management for Automated Clothing Manufacture (의류산업의 생산 자동화 현황과 그에 따른 생산기획 및 관리에 관한 연구)

  • 박진아;조진숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.1
    • /
    • pp.19-34
    • /
    • 1997
  • The goals of this study are to suggest the guidance for automated clothing manufacture by analysis the technology of the automated manufacturing facilities and to propose how improve the efficiency of the production planning and management for automated clothing manufacture In this study, the research about the automated clothing manufacturing machines and the analysis about the modules and functions of apparel information systems were performed. In order to understand the factory automation of the larger clothing firms, the case study method was used. The case study samples were 3 clothing firms. The results and suggestions are as follows: 1. An information technology for automated clothing manufacture has enabled the computer integrated manufacturing system to connect production planning and management part with each work station on the factory floor. 2. The apparel information system to integrate and manage manufacturing informations from each workstation and the apparel CAD system are used in the department of production planning. At the cutting room, there are automated manufacturing machines like an automatic spreading system and an automatic cutting system. Sewing room has the computer controlled unit production system and semi-automated sewing machines. In addition, in the finishing room, an automatic packing machine and a press system are used and besides a warehousing system has been developed. Considering these available technology, for better product efficiency, it is necessary to consider and utilize the specific character of these automatic manufacturing machines and computer system whether they proper to each product style. 3. Most of the clothing manufacturers are in the stage of semi-automated manufacture. In order to improve the manufacturing environment, it is needed to gradual procedure of manufacturing automation with considering the firm's financial condition, existing facilities and staffs operating machines. The case study sample firms are in the high degree of manufacturing automation. They can accomplish the flexible manufacturing system to link the information system with each work station menufacturing system by computerized control. For the case of the firm having already used the computer integrated manufacturing and managing system, it is necessary that the function to deal with drawing information is added to the retaining module of the apparel system.

  • PDF

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Proposal of a Novel Flying Master Bus Architecture For System On a Chip and Its Evaluation (SoC를 위한 새로운 플라잉 마스터 버스 아키텍쳐 구조의 제안과 검증)

  • Lee, Kook-Pyo;Kang, Seong-Jun;Yoon, Yung-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.69-78
    • /
    • 2010
  • To implement the high performance SoC, we propose the flying master bus architecture that a specially defined master named as the flying master directly accesses the selected slaves with no regard to the bus protocol. The proposed bus architecture was implemented through Verilog and mapped the design into Hynix 0.18um technology. As master and slave wrappers have around 150 logic gate counts, the area overhead is still small considering the typical area of modules in SoC designs. In TLM performance simulation about proposed architecture, 25~40% of transaction cycle and 43~60% of bus efficiency are increased and 43~77% of request cycle is decreased, compared with conventional bus architecture. Conclusively, we assume that the proposed flying master bus architecture is promising as the leading candidate of the bus architecture in the aspect of performance and efficiency.

Analysis of Grounding Resistance for Zero Energy Town Floating PV System Using Underground Wiring (매설지선 방식을 적용한 에너지 자립마을용 수상 태양광 발전 시스템의 접지저항 분석)

  • Ko, Jae-Woo;Lim, Jong-Log;Kim, David K.;Cha, Hae-Lim;Kim, Si-Han;Lee, Chang-Koo;Ahn, Hyung-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.303-306
    • /
    • 2016
  • Floating PV system is installed on the water such as artificial lake, reservoir, river for the purposes of zero energy town and/or large scale of PV station. There are electrical gains from cooling effect by water and reflection of water surface. Particularly, floating PV power station with high efficiency solar cell modules receives a lot of attention recently. Floating PV system is installed on the water, which means grounding method to the frame of solar cell and electrical box such as connector band and distribution panelboard should be applied in different way from grounding method of PV system on land. The grounding resistance should be 10[${\Omega}$] in case the voltage is over 400[V] in accordance with Korean Standard. The applicable parameters are the resistivity of water in various circumstances, depth of water, and length of electrode in order to meet 10[${\Omega}$] of grounding resistance. We calculated appropriate length of the electrode on the basis of theoretical equation of grounding resistance and analyzed the relation between each parameters through MATLAB simulation. This paper explains grounding system of floating PV power station and presents considerations on grounding design according to the resistivity of water.

Performance test of PVT-water system considering ambient air and circulating water temperature (외기 및 순환수 온도조건을 고려한 PVT-water 시스템의 성능실험)

  • Jeong, Yong-Dae;Nam, Yujin
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.83-88
    • /
    • 2015
  • Purpose: Photovoltaic system is a technique for producing electrical power by utilizing solar energy, which can be used over 20 years with simple maintenance. However, in the case of photovoltaic systems, the energy conversion efficiency decreases as the surface temperature of module increases, compared with other renewable energy technologies. In this regard, PVT module can increase the energy utilization of a composite module as producing heat and electricity simultaneously by using solar energy. Currently, many researches have been promoting in order to develop a high efficiency PVT module in Korea. However, there are a few studies about the performance of the modules corresponding the shape of types and various heat exchangers of the PVT module. In this study, the electrical performance was measured by the change of the ambient temperature and the circulating water temperature using the fabricated PVT module. Method: Experiments were performed using a solar simulator. And this experiment was assumed that the weather condition was in each season, as winter, spring, autumn and summer. It was identified that the I-V curve associated with the change of the experimental conditions and confirmed the change in the electrical characteristics. Result: As a result, it was figured out that the surface temperature and the electrical performance changes in case conditions. The electrical performance was calculated in different temperature condition and the power production was confirmed by the change of module temperature.