• Title/Summary/Keyword: High-ductility

Search Result 983, Processing Time 0.025 seconds

Experimental and theoretical studies of confined HSCFST columns under uni-axial compression

  • Lai, M.H.;Ho, J.C.M.
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.527-552
    • /
    • 2014
  • The development of modern concrete technology makes it much easier to produce high-strength concrete (HSC) or ultra-high-strength concrete (UHSC) with high workability. However, the application of this concrete is limited in practical construction of traditional reinforced concrete (RC) structures due to low-ductility performance. To further push up the limit of the design concrete strength, concrete-filled-steel-tube (CFST) columns have been recommended considering its superior strength and ductility performance. However, the beneficial composite action cannot be fully developed at early elastic stage as steel dilates more than concrete and thereby reducing the elastic strength and stiffness of the CFST columns. To resolve this problem, external confinement in the form of steel rings is proposed in this study to restrict the lateral dilation of concrete and steel. In this paper, a total of 29 high-strength CFST (HSCFST) columns of various dimensions cast with concrete strength of 75 to 120 MPa concrete and installed with external steel rings were tested under uni-axial compression. From the results, it can be concluded that the proposed ring installation can further improve both strength and ductility of HSCFST columns by restricting the column dilation. Lastly, an analytical model calculating the uni-axial strength of ring-confined HSCFST columns is proposed and verified based on the Von-Mises and Mohr-Coulomb failure criteria for steel tube and in-filled concrete, respectively.

Evaluation on Moment-Curvature Relations and Curvature Ductility Factor of Reinforced Concrete Beams with High Strength Materials (고강도 재료를 사용한 철근콘크리트 보의 모멘트-곡률관계 및 곡률연성지수 평가)

  • Lee, Hyung-Joon
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.283-294
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures, specially, the reinforcing steel is permitted to used in RC structures up to yielding strength of 600 MPa. The strength of materials in RC beam section effects on the behavior and ductility of the RC members. In this study, the numerical analysis has been conducted to obtain the complete moment-curvature relation and the curvature ductility factor for the rectangular RC beams sections under the various reinforcement conditions and the effects of concrete strength, yield strength of reinforcement steel on the behavior and the curvature ductility factor of RC beam sections have been evaluated. The compressive strength of concrete and yield strength of steel have effected in various manner on the behavior and the curvature ductility factor of RC beam sections under reinforcement conditions. In the case of beam sections with equal resisting moment. the curvature ductility factor of RC beam section decreased with an increase in the yield strength of steel and increased with an increase in the concrete strength. When the yield strength of steel increased from 400 MPa to 600 MPa, the curvature ductility factor reduced about 30% and as the concrete strength increased from 30 MPa to 70 MPa, the curvature ductility factor of RC beam section increased about 3 times.

Stress-Strain Model for Laterally Confined Concrete : Part I. Circular Sectional Members (횡구속 콘크리트의 압축 응력-변형률 모델 : Part I. 원형단면 부재)

  • Sun, Chang Ho;Jeong, Hyeok Chang;Kim, Ick hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2017
  • In order to avoid collapse of bridges in earthquakes bridge piers are generally designed to attain sufficient ductility. This full-ductility design method has merits for securing the seismic safety readily against strong earthquakes but, it has weakness of high cost design because of excessive safety margin. Recently, in many countries with high seismic technologies, the seismic design concept tends to shift from the collapse prevention design to the performance-based one which requires different performance (damage) levels according to the structural importance. In order to establish this performance-based design method the displacement ductility of confined concrete members should be evaluated quantitatively. And the stress-strain model of confined concrete is indispensible in evaluating displacement ductility. In this study, 6 test groups with different lateral reinforcement ratios were prepared. 10 same specimens with circular section for each group were tested to obtain more reliable test results. The characteristic values necessary for composing the stress-strain model were obtained from experiments. Based on these characteristic values the new stress-strain model modifying the Hoshikuma's one has been proposed.

Effects of strain hardening of steel reinforcement on flexural strength and ductility of concrete beams

  • Ho, J.C.M.;Au, F.T.K.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.2
    • /
    • pp.185-198
    • /
    • 2005
  • In the design of reinforced concrete beams, it is a standard practice to use the yield stress of the steel reinforcement for the evaluation of the flexural strength. However, because of strain hardening, the tensile strength of the steel reinforcement is often substantially higher than the yield stress. Thus, it is a common belief that the actual flexural strength should be higher than the theoretical flexural strength evaluated with strain hardening ignored. The possible increase in flexural strength due to strain hardening is a two-edge sword. In some cases, it may be treated as strength reserve contributing to extra safety. In other cases, it could lead to greater shear demand causing brittle shear failure of the beam or unexpected greater capacity of the beam causing violation of the strong column-weak beam design philosophy. Strain hardening may also have certain effect on the flexural ductility. In this paper, the effects of strain hardening on the post-peak flexural behaviour, particularly the flexural strength and ductility, of reinforced normal- and high-strength concrete beams are studied. The results reveal that the effects of strain hardening could be quite significant when the tension steel ratio is relatively small.

An Experimental Study on the Improvement of Structural Performance for Concrete Structure Spraying Composite Polyurea (복합폴리우레아를 도포한 콘크리트 구조물의 구조성능 개선에 관한 실험적 연구)

  • Cho, Dong-Ho;Kim, Jin-Bong;Kim, Tae-Wan;Eun, Hee-Chang
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • This study investigates the applicability of composite polyurea to contain fiber reinforcement like fiber glass, steel fiber and carbon nanotube. Polyurea as elastomer is an excellent water-proofing material with many mechanical characteristics such as high tensile strength, ductility, high rate of expansion and contraction, and so on. The reinforcing fibers can be utilized for improving the load-carrying capacity of concrete structures. The polyurea plays a role to improve the ductility and toughness. Composite polyurea takes the mechanical advantages of the fibers and the polyurea. The test variables include the type of reinforcing fiber, its spraying thickness, and its weight ratio contained in the composite polyurea. It is observed that the load-carrying capacity, and the ductility and toughness are improved with the increase in the spraying thickness and the weight ratio contained in the composite polyurea. It is expected that the composite polyurea can be widely utilized in enhancing the structural and seismic performance.

A Study on the Lateral Confinement Effects of Spiral High-Strength Concrete Columns (나선근에 의한 고강도 콘크리트 기둥부재의 횡보강효과에 관한 연구)

  • 박훈규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.547-552
    • /
    • 1998
  • Lateral pressure by circular reinforcement greatly enhances the maximum strength and ductility of spiral columns. The lateral confinement effects will be improves ductility of high-strength concrete. The major purpose of this paper is to study on the improvements of maximum strength and strain at that point of spiral concrete columns subject to axial loads. For this purpose, this study collected the other analytical results and the experimental data that has been performed by a lot of worldwide researchers and also analyzed it statistically. As the result, the theoretical equation for predict maximum strength and strain at that point was proposed. It is based on calculation of lateral confinement pressure generated by circular reinforcement, and the resulting improvements in strength and ductility of confined concrete.

  • PDF

Flexural Strength and Ductility of High-Strength R/C Columns subjected to Earthquake Loadings (지진하중을 받는 고강도 콘크리트 기둥의 휨강도와 연성)

  • 박관식;황선경;한병찬;성수용;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.145-150
    • /
    • 2001
  • With the increase in the use of High-Strength Concrete(HSC) despite the its weakness like brittle characteristic, it is important to improve the performance of HSC columns, nowadays. Therefore, it is common to use higher strength steel in HSC for the purpose of ductility and strength improvement. This experimental study was set up to investigate the inelastic behavior of HSC(700kg/$cm^{2}$) columns subjected to combined axial and repeated lateral loads. Effects of key variables such as the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength are studied in this research program. Test results indicate that inelastic response of HSC columns improve with proper confinement of core concrete. Increasing the amount of transverse reiuorement results in increased ductility.

  • PDF

Experimental study on seismic performances of steel framebent structures

  • Liang, Jiongfeng;Gu, Lian S.;Hu, Ming H.
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.1111-1123
    • /
    • 2016
  • To study seismic performance of steel frame-bent structure, one specimen with one-tenth scale, three-bay, and five-story was tested under reversed cyclic lateral load. The entire loading process and failure mode were observed, and the seismic performance indexes including hysteretic loops, skeleton curve, ductility, load bearing capacity, drift ratio, energy dissipation capacity and stiffness degradation were analyzed. The results show that the steel frame-bent structure has good seismic performance. And the ductility and the energy dissipation capacity were good, the hysteresis loops were in spindle shape, which shape were full and had larger area. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. It can be helpful to design this kind of structure in high-risk seismic zone.

Flexural behaviour of square UHPC-filled hollow steel section beams

  • Guler, Soner;Copur, Alperen;Aydogan, Metin
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.225-237
    • /
    • 2012
  • This paper presents an experimental investigation of the flexural behavior of square hollow steel section (HSS) beams subjected to pure bending. Totally six unfilled and nine ultra high performance concrete (UHPC)-filled HSS beams were tested under four-point bending until failure. The effects of the steel tube thickness, the yield strength of the steel tube and the strength of concrete on moment capacity, curvature, and ductility of UHPC-filled HSS beams were examined. The performance indices named relative ductility index (RDI) and strength increasing factor (SIF) were investigated with regard to different height-to-thickness ratio of the specimens. The flexural strengths obtained from the tests were compared with the values predicted by Eurocode 4, AISC-LRFD and CIDECT design codes. The results showed that the increase in the moment capacity and the corresponding curvature is much greater for thinner HSS beams than thicker ones. Eurocode 4 and AISC-LRFD predict the ultimate moment capacity of the all UHPC-filled HSS beams conservatively.

Seismic Evaluation of concrete-Filled Steel Piers with Secondary Reinforcement (보조보강재가 있는 콘크리트 충전 강교각의 내진성능 평가)

  • 박병기
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.349-356
    • /
    • 2000
  • Strenght and ductility are major factors in the aseismic design of a bridge pier. In spite of good performance in both steel piers have not been used widely due to high cost. But with the filled-in concrete the steel pier have advantages compare to the steel pier only such as improved strength ductility fast construction small section and reasonable cost. In this paper concrete-filled steel piers are tested using quasi-static cyclic lateral load with constant axial load to evaluate the performance. The secondary reinforcement devices such as bolts corner plate and turn buckle are used inside of the piers to improve the ductility with minimum additional cost. Test results shows filled-in concrete and secondary reinforcement devices increase the strength and the ductility of the steel pier.

  • PDF