• Title/Summary/Keyword: High-dimensional Data

Search Result 1,553, Processing Time 0.027 seconds

Association-based Unsupervised Feature Selection for High-dimensional Categorical Data (고차원 범주형 자료를 위한 비지도 연관성 기반 범주형 변수 선택 방법)

  • Lee, Changki;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.537-552
    • /
    • 2019
  • Purpose: The development of information technology makes it easy to utilize high-dimensional categorical data. In this regard, the purpose of this study is to propose a novel method to select the proper categorical variables in high-dimensional categorical data. Methods: The proposed feature selection method consists of three steps: (1) The first step defines the goodness-to-pick measure. In this paper, a categorical variable is relevant if it has relationships among other variables. According to the above definition of relevant variables, the goodness-to-pick measure calculates the normalized conditional entropy with other variables. (2) The second step finds the relevant feature subset from the original variables set. This step decides whether a variable is relevant or not. (3) The third step eliminates redundancy variables from the relevant feature subset. Results: Our experimental results showed that the proposed feature selection method generally yielded better classification performance than without feature selection in high-dimensional categorical data, especially as the number of irrelevant categorical variables increase. Besides, as the number of irrelevant categorical variables that have imbalanced categorical values is increasing, the difference in accuracy between the proposed method and the existing methods being compared increases. Conclusion: According to experimental results, we confirmed that the proposed method makes it possible to consistently produce high classification accuracy rates in high-dimensional categorical data. Therefore, the proposed method is promising to be used effectively in high-dimensional situation.

Comparison of Lasso Type Estimators for High-Dimensional Data

  • Kim, Jaehee
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.4
    • /
    • pp.349-361
    • /
    • 2014
  • This paper compares of lasso type estimators in various high-dimensional data situations with sparse parameters. Lasso, adaptive lasso, fused lasso and elastic net as lasso type estimators and ridge estimator are compared via simulation in linear models with correlated and uncorrelated covariates and binary regression models with correlated covariates and discrete covariates. Each method is shown to have advantages with different penalty conditions according to sparsity patterns of regression parameters. We applied the lasso type methods to Arabidopsis microarray gene expression data to find the strongly significant genes to distinguish two groups.

Design and Performance Analysis of Signature-Based Hybrid Spill-Tree for Indexing High Dimensional Vector Data (고차원 벡터 데이터 색인을 위한 시그니쳐-기반 Hybrid Spill-Tree의 설계 및 성능평가)

  • Lee, Hyun-Jo;Hong, Seung-Tae;Na, So-Ra;Jang, You-Jin;Chang, Jae-Woo;Shim, Choon-Bo
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.173-189
    • /
    • 2009
  • Recently, video data has attracted many interest. That is the reason why efficient indexing schemes are required to support the content-based retrieval of video data. But most indexing schemes are not suitable for indexing a high-dimensional data except Hybrid Spill-Tree. In this paper, we propose an efficient high-dimensional indexing scheme to support the content-based retrieval of video data. For this, we extend Hybrid Spill-Tree by using a newly designed clustering technique and by adopting a signature method. Finally, we show that proposed signature-based high dimensional indexing scheme achieves better retrieval performance than existing M-Tree and Hybrid Spill-Tree.

  • PDF

INVITED PAPER MULTIVARIATE ANALYSIS FOR THE CASE WHEN THE DIMENSION IS LARGE COMPARED TO THE SAMPLE SIZE

  • Fujikoshi, Yasunori
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.1
    • /
    • pp.1-24
    • /
    • 2004
  • This paper is concerned with statistical methods for multivariate data when the number p of variables is large compared to the sample size n. Such data appear typically in analysis of DNA microarrays, curve data, financial data, etc. However, there is little statistical theory for high dimensional data. On the other hand, there are some asymptotic results under the assumption that both and p tend to $\infty$, in some ratio p/n ${\rightarrow}$c. The results suggest that the new asymptotic results are more useful and insightful than the classical large sample asymptotics. The main purpose of this paper is to review some asymptotic results for high dimensional statistics as well as classical statistics under a high dimensional asymptotic framework.

Applications of response dimension reduction in large p-small n problems

  • Minjee Kim;Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • The goal of this paper is to show how multivariate regression analysis with high-dimensional responses is facilitated by the response dimension reduction. Multivariate regression, characterized by multi-dimensional response variables, is increasingly prevalent across diverse fields such as repeated measures, longitudinal studies, and functional data analysis. One of the key challenges in analyzing such data is managing the response dimensions, which can complicate the analysis due to an exponential increase in the number of parameters. Although response dimension reduction methods are developed, there is no practically useful illustration for various types of data such as so-called large p-small n data. This paper aims to fill this gap by showcasing how response dimension reduction can enhance the analysis of high-dimensional response data, thereby providing significant assistance to statistical practitioners and contributing to advancements in multiple scientific domains.

A Binary Prediction Method for Outlier Detection using One-class SVM and Spectral Clustering in High Dimensional Data (고차원 데이터에서 One-class SVM과 Spectral Clustering을 이용한 이진 예측 이상치 탐지 방법)

  • Park, Cheong Hee
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.6
    • /
    • pp.886-893
    • /
    • 2022
  • Outlier detection refers to the task of detecting data that deviate significantly from the normal data distribution. Most outlier detection methods compute an outlier score which indicates the degree to which a data sample deviates from normal. However, setting a threshold for an outlier score to determine if a data sample is outlier or normal is not trivial. In this paper, we propose a binary prediction method for outlier detection based on spectral clustering and one-class SVM ensemble. Given training data consisting of normal data samples, a clustering method is performed to find clusters in the training data, and the ensemble of one-class SVM models trained on each cluster finds the boundaries of the normal data. We show how to obtain a threshold for transforming outlier scores computed from the ensemble of one-class SVM models into binary predictive values. Experimental results with high dimensional text data show that the proposed method can be effectively applied to high dimensional data, especially when the normal training data consists of different shapes and densities of clusters.

A Comparison and Analysis on High-Dimensional Clustering Techniques for Data Mining (데이터 마이닝을 위한 고차원 클러스터링 기법에 관한 비교 분석 연구)

  • 김홍일;이혜명
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.12
    • /
    • pp.887-900
    • /
    • 2003
  • Many applications require the clustering of large amounts of high dimensional data. Most automated clustering techniques have been developed but they do not work effectively and/or efficiently on high dimensional (numerical) data, which is due to the so-called “curse of dimensionality”. Moreover, the high dimensional data often contain a significant amount of noise, which causes additional ineffectiveness of algorithms. Therefore, it is necessary to look over the structure and various characteristics of high dimensional data and to develop algorithm that support clustering adapted to applications of the high dimensional database. In this paper, we investigate and classify the existing high dimensional clustering methods by analyzing the strength and weakness of each method for specific applications and comparing them. Especially, in terms of efficiency and effectiveness, we compare the traditional algorithms with CLIP which are developed by us. This study will contribute to develop more advanced algorithms than the current algorithms.

  • PDF

Enhanced Locality Sensitive Clustering in High Dimensional Space

  • Chen, Gang;Gao, Hao-Lin;Li, Bi-Cheng;Hu, Guo-En
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.125-129
    • /
    • 2014
  • A dataset can be clustered by merging the bucket indices that come from the random projection of locality sensitive hashing functions. It should be noted that for this to work the merging interval must be calculated first. To improve the feasibility of large scale data clustering in high dimensional space we propose an enhanced Locality Sensitive Hashing Clustering Method. Firstly, multiple hashing functions are generated. Secondly, data points are projected to bucket indices. Thirdly, bucket indices are clustered to get class labels. Experimental results showed that on synthetic datasets this method achieves high accuracy at much improved cluster speeds. These attributes make it well suited to clustering data in high dimensional space.

Multiple testing and its applications in high-dimension (고차원자료에서의 다중검정의 활용)

  • Jang, Woncheol
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.5
    • /
    • pp.1063-1076
    • /
    • 2013
  • The power of modern technology is opening a new era of big data. The size of the datasets affords us the opportunity to answer many open scientific questions but also presents some interesting challenges. High-dimensional data such as microarray are common in big data. In this paper, we give an overview of recent development of multiple testing including global and simultaneous testing and its applications to high-dimensional data.

SVM based Clustering Technique for Processing High Dimensional Data (고차원 데이터 처리를 위한 SVM기반의 클러스터링 기법)

  • Kim, Man-Sun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.816-820
    • /
    • 2004
  • Clustering is a process of dividing similar data objects in data set into clusters and acquiring meaningful information in the data. The main issues related to clustering are the effective clustering of high dimensional data and optimization. This study proposed a method of measuring similarity based on SVM and a new method of calculating the number of clusters in an efficient way. The high dimensional data are mapped to Feature Space ones using kernel functions and then similarity between neighboring clusters is measured. As for created clusters, the desired number of clusters can be got using the value of similarity measured and the value of Δd. In order to verify the proposed methods, the author used data of six UCI Machine Learning Repositories and obtained the presented number of clusters as well as improved cohesiveness compared to the results of previous researches.