• 제목/요약/키워드: High-dimensional Data

검색결과 1,553건 처리시간 0.028초

Similarity Measure Design on High Dimensional Data

  • Nipon, Theera-Umpon;Lee, Sanghyuk
    • 한국융합학회논문지
    • /
    • 제4권1호
    • /
    • pp.43-48
    • /
    • 2013
  • Designing of similarity on high dimensional data was done. Similarity measure between high dimensional data was considered by analysing neighbor information with respect to data sets. Obtained result could be applied to big data, because big data has multiple characteristics compared to simple data set. Definitely, analysis of high dimensional data could be the pre-study of big data. High dimensional data analysis was also compared with the conventional similarity. Traditional similarity measure on overlapped data was illustrated, and application to non-overlapped data was carried out. Its usefulness was proved by way of mathematical proof, and verified by calculation of similarity for artificial data example.

고차원 데이터에서 랜드마크를 이용한 거리 기반 이상치 탐지 방법 (A Distance-based Outlier Detection Method using Landmarks in High Dimensional Data)

  • 박정희
    • 한국멀티미디어학회논문지
    • /
    • 제24권9호
    • /
    • pp.1242-1250
    • /
    • 2021
  • Detection of outliers deviating normal data distribution in high dimensional data is an important technique in many application areas. In this paper, a distance-based outlier detection method using landmarks in high dimensional data is proposed. Given normal training data, the k-means clustering method is applied for the training data in order to extract the centers of the clusters as landmarks which represent normal data distribution. For a test data sample, the distance to the nearest landmark gives the outlier score. In the experiments using high dimensional data such as images and documents, it was shown that the proposed method based on the landmarks of one-tenth of training data can give the comparable outlier detection performance while reducing the time complexity greatly in the testing stage.

반복적 2차원 프로젝션 필터링을 이용한 확장 고차원 클러스터링 (Extended High Dimensional Clustering using Iterative Two Dimensional Projection Filtering)

  • 이혜명;박영배
    • 정보처리학회논문지D
    • /
    • 제8D권5호
    • /
    • pp.573-580
    • /
    • 2001
  • 대용량의 고차원 데이터 집합은 고차원 데이터 고유 희소성에 의하여 상당한 양의 잡음을 포함하므로 효과적인 고차원 클러스터링에 어려움을 더한다. CLIP은 이와 같은 고차원 데이터의 특성을 지원하는 클러스터링 알고리즘으로 개발되었다. CLIP은 1차원 성형변환 프로젝션을 점진적으로 적용하여, 각 프로젝션 공간에서 얻어진 1차원 클러스터들의 곱집합을 찾는다. 이 집합은 클러스터를 포함할 뿐 아니라 잡음도 포함할 수 있다. 본 논문에서는 클러스터를 포함하는 곱집합을 정제하는 확장된 CLIP 알고리즘을 제안한다. 이미 CLIP에서 찾은 곱집합에 반복적인 2차원 프로젝션을 적용하여 클러스터의 고차원적 잡음을 제거한다. 확장된 알고리즘의 성능을 평가하기 위해 합성 데이터를 이용한 일련의 실험을 통하여 효과성을 증명한다.

  • PDF

Multivariate Procedure for Variable Selection and Classification of High Dimensional Heterogeneous Data

  • Mehmood, Tahir;Rasheed, Zahid
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.575-587
    • /
    • 2015
  • The development in data collection techniques results in high dimensional data sets, where discrimination is an important and commonly encountered problem that are crucial to resolve when high dimensional data is heterogeneous (non-common variance covariance structure for classes). An example of this is to classify microbial habitat preferences based on codon/bi-codon usage. Habitat preference is important to study for evolutionary genetic relationships and may help industry produce specific enzymes. Most classification procedures assume homogeneity (common variance covariance structure for all classes), which is not guaranteed in most high dimensional data sets. We have introduced regularized elimination in partial least square coupled with QDA (rePLS-QDA) for the parsimonious variable selection and classification of high dimensional heterogeneous data sets based on recently introduced regularized elimination for variable selection in partial least square (rePLS) and heterogeneous classification procedure quadratic discriminant analysis (QDA). A comparison of proposed and existing methods is conducted over the simulated data set; in addition, the proposed procedure is implemented to classify microbial habitat preferences by their codon/bi-codon usage. Five bacterial habitats (Aquatic, Host Associated, Multiple, Specialized and Terrestrial) are modeled. The classification accuracy of each habitat is satisfactory and ranges from 89.1% to 100% on test data. Interesting codon/bi-codons usage, their mutual interactions influential for respective habitat preference are identified. The proposed method also produced results that concurred with known biological characteristics that will help researchers better understand divergence of species.

개념 변동 고차원 스트리밍 데이터에 대한 차원 감소 방법 (Dimension Reduction Methods on High Dimensional Streaming Data with Concept Drift)

  • 박정희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권8호
    • /
    • pp.361-368
    • /
    • 2016
  • 고차원데이터에 대한 차원 감소 기법들은 많이 연구되어져 온 반면, 개념 변동을 가진 고차원 스트리밍 데이터에서 적용할 수 있는 차원 감소 기법에 대한 연구는 제한적이다. 이 논문에서는 스트리밍 데이터에서 적용할 수 있는 점층적 차원 감소 기법들을 살펴보고, 개념 변동 고차원 스트리밍 데이터에 대해 분류 성능을 향상시킬 수 있도록 차원 감소를 효과적으로 적용하는 방법을 제안한다.

Demension reduction for high-dimensional data via mixtures of common factor analyzers-an application to tumor classification

  • Baek, Jang-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제19권3호
    • /
    • pp.751-759
    • /
    • 2008
  • Mixtures of factor analyzers(MFA) is useful to model the distribution of high-dimensional data on much lower dimensional space where the number of observations is very large relative to their dimension. Mixtures of common factor analyzers(MCFA) can reduce further the number of parameters in the specification of the component covariance matrices as the number of classes is not small. Moreover, the factor scores of MCFA can be displayed in low-dimensional space to distinguish the groups. We propose the factor scores of MCFA as new low-dimensional features for classification of high-dimensional data. Compared with the conventional dimension reduction methods such as principal component analysis(PCA) and canonical covariates(CV), the proposed factor score was shown to have higher correct classification rates for three real data sets when it was used in parametric and nonparametric classifiers.

  • PDF

점진적 프로젝션을 이용한 고차원 글러스터링 기법 (High-Dimensional Clustering Technique using Incremental Projection)

  • 이혜명;박영배
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제28권4호
    • /
    • pp.568-576
    • /
    • 2001
  • 대부분의 클러스터링 알고리즘들은 고차원 공간에서 성능이 급격히 저하되는 경향이 있다. 더욱이 고차원 데이타는 상당한 양의 잡음 데이타를 포함하고 있으므로 알고리즘의 추가적인 효과성 문제를 야기한다. 그러므로 고차원 데이타의 구조와 특성을 지원하는 적합한 클러스터링 기법이 개발되어야 한다. 본 논문에서는 선형변환 프로젝션을 이용한 클러스터링 알고리즘 CLIP을 제안한다. CLIP은 고차원 클러스터링의 효율성 및 효과성 문제를 극복하기 위해 개발되었으며, 클러스터 형성에 밀접하게 연관된 부분 공간에서 클러스터를 탐사하는 기법이다. 알고리즘의 주요 사상은 각1차원적 부분공간에서의 클러스터링에 기본을 두고 있지만. 점진적인 프로젝션을 이용하여 고차원 클러스터를 탐사한 뿐만 아니라 연산을 획기적으로 줄인다. CLIP의 성능을 평가하기 위해 합성 데이타를 이용한 일련의 실험을 통하여 효율성 및 효과성을 증명한다

  • PDF

고차원 대용량 자료의 시각화에 대한 고찰 (A study on high dimensional large-scale data visualization)

  • 이은경;황나영;이윤동
    • 응용통계연구
    • /
    • 제29권6호
    • /
    • pp.1061-1075
    • /
    • 2016
  • 본 논문에서는 고차원 대용량 자료의 시각화에서 발생할 수 있는 문제점들을 살펴보고 이에 대하여 개발된 방법들에 대하여 논의하였다. 고차원 자료의 경우 2차원 공간상에 표현하기 위하여 중요 변수를 선택해야하며 다양한 시각적 표현 속성과 다면화 방법을 이용하여 좀 더 많은 변수들을 표현할 수 있었다. 또한 관심있는 뷰를 보이는 낮은 차원을 찾는 사영추정방법을 이용할 수 있다. 대용량 자료에서는 점들이 겹쳐지는 문제점을 흩트림과 알파 블렌딩 등을 이용하여 해결할 수 있었다. 또한 고차원 대용량 자료의 탐색을 위하여 개발된 R 패키지인 tabplot과 scagnostics, 그리고 대화형 웹 그래프를 위한 다양한 형태의 R 패키지들을 살펴보았다.

Optimized Entity Attribute Value Model: A Search Efficient Re-presentation of High Dimensional and Sparse Data

  • Paul, Razan;Latiful Hoque, Abu Sayed Md.
    • Interdisciplinary Bio Central
    • /
    • 제3권3호
    • /
    • pp.9.1-9.5
    • /
    • 2011
  • Entity Attribute Value (EAV) is the widely used solution to represent high dimensional and sparse data, but EAV is not search efficient for knowledge extraction. In this paper, we have proposed a search efficient data model: Optimized Entity Attribute Value (OEAV) for physical representation of high dimensional and sparse data as an alternative of widely used EAV. We have implemented both EAV and OEAV models in a data warehousing en-vironment and performed different relational and warehouse queries on both the models. The experimental results show that OEAV is dramatically search efficient and occupy less storage space compared to EAV.

A small review and further studies on the LASSO

  • Kwon, Sunghoon;Han, Sangmi;Lee, Sangin
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권5호
    • /
    • pp.1077-1088
    • /
    • 2013
  • High-dimensional data analysis arises from almost all scientific areas, evolving with development of computing skills, and has encouraged penalized estimations that play important roles in statistical learning. For the past years, various penalized estimations have been developed, and the least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani (1996) has shown outstanding ability, earning the first place on the development of penalized estimation. In this paper, we first introduce a number of recent advances in high-dimensional data analysis using the LASSO. The topics include various statistical problems such as variable selection and grouped or structured variable selection under sparse high-dimensional linear regression models. Several unsupervised learning methods including inverse covariance matrix estimation are presented. In addition, we address further studies on new applications which may establish a guideline on how to use the LASSO for statistical challenges of high-dimensional data analysis.