• Title/Summary/Keyword: High-density polyethylene

Search Result 364, Processing Time 0.031 seconds

Study on the Physical Property of Soft Film for Greenhouse (시설하우스용 연질필름의 물리적 특성에 관한 연구)

  • 장유섭;한길수;김승희;정두호;김기철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.23-33
    • /
    • 1996
  • This study was performed to induce a quality improvement and standardization of materials used for greenhouse. For this purpose, physical and mechanical properties of agricultural films for greenhouse were measured by kinds and thickness of the films. The properties are composed of impact, tensile, tear propagation strength and light transmittance. The results were summarized as follows. 1. At the impact test result of the falling dart, the thicker the film, the greater the impact strength of soft film. The impact weight at 50 percents is from 158g to 213g and the strength of low density polyethylene(LDPE) film is higher than the rest of any other films. 2. Seeing the leveling of the impact rupture, maximum impact weight which was ruptured very little ranges from 62g to 192g. The impact strength of 0.1mm films was higher than that of 0.05mm as from 1.8 to 3.2 times. 3. Tensile weight covers from 0.95kg to 2.22kg in the test materials, and the weight of lengthwise film is larger than that of width. LDPE film has high value of tensile weight. Elongation range is from 345 to 102 percent and lengthwise elongation is greater than width as much as from 1.4 to 2.7 times. 4. Tea. propagation strength ranges from 80.5kg/cm to 121.7kg/cm, and unlike which of LDPE film has high value, EVA film has low value in the films tested. The width strength is higher than the lengthwise. 5. The light transmittance of the soft film is about 78-92 percent in the range of ultraviolet ray, but has high value in the visible ray range.

  • PDF

Postharvest Treatment of Sweet Persimmon and Preparation of Its Dehydrated Product (수확 후 단감 전처리 기술 확립과 고품질 건조과 개발)

  • Kang, Ji-Hoon;Park, Seung-Jong;Seong, Ki-Hyun;Song, Kyung Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.325-329
    • /
    • 2014
  • To maintain the quality of sweet persimmon during storage, the samples were treated with a combination of 50 ppm $ClO_2$ and 0.1% fumaric acid after harvest, packaged with low density polyethylene film, and stored at $1{\pm}1^{\circ}C$ for 35 days. The combined treatment reduced the populations of total aerobic bacteria, yeast and molds by 1.82 and 2.07 log CFU/g, respectively, compared to the control. During storage, hardness of all samples decreased, but total soluble solids and weight loss were not significantly different among treatments. In addition, high-quality dehydrated sweet persimmon was prepared using red algae extract as a dehydrating agent. The rehydration ratio and vitamin C content of red algae extract-treated sample were greater than those of hot-air dried sample. These results suggest that the combined treatment of $ClO_2$ and fumaric acid can be useful for maintaining microbiological safety of sweet persimmon during storage and dehydration of sweet persimmon slices using red algae extract is an efficient drying method for the preparation of high-quality dehydrated sweet persimmon.

Evaluation of Aging Characteristics of Selected PMA using HP-GPC (HP-GPC를 이용한 폴리머개질 아스팔트의 노화특성 분석)

  • Kim, Kwang-Woo;Doh, Young-Soo;Amerkhanian, Serj N.
    • International Journal of Highway Engineering
    • /
    • v.6 no.2 s.20
    • /
    • pp.15-24
    • /
    • 2004
  • Oxidation causes increment of the quantity of large molecular size or LMS in asphalt and is a major reason for hardening of asphalt binder. An extended service life of pavement on a road is expected by reducing oxidation of binder. Oxidation of binder occurs during hot mixing with aggregates before placement on road and then during in-service after the asphalt pavement is constructed. Quantitative increase of LMS as result of aging after RTFO and PAV was analyzed based on the data from high-pressure gel-permeation chromatography (HP-GPC). Polymer modified asphalt (PMA) after RTFO procedure showed 20-30% increment in LMS and then after PAV procedure more than twice, although the percentage of increment was different according to asphalt brand and grade. The PMAs containing LDPE or SBS, which showed a great mechanical property improvement in previous studies, were selected for characterizing PMA aging In this study. Considerably reduced increment of LMS was observed from the PMA containing LDPE after RTFO and PAV procedures. The GPC result showing the binder with less LMS increment means that the asphalt while being mixed with LDPE was aged less during the aging treatment. The dispersed particle of LDPE in asphalt cement seems to disturb oxidative aging reaction and evaporation.

  • PDF

Study of Pallet Scale Modified Atmosphere Packaging Films for Reducing Water Condensation

  • Kim, Jinse;Park, Jong Woo;Park, Seokho;Choi, Dong Soo;Choi, Seung Ryul;Kim, Yong Hoon;Lee, Soo Jang;Park, Chun Wan;Lee, Jung- Soo;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.98-107
    • /
    • 2016
  • Purpose: The aim of this study was to find an appropriate polymer film, which could reduce the water condensation for pallet-size modified atmosphere packaging (MAP). Methods: Five different types of films were selected from several commercialized films. Prior to the real food storage test, plastic boxes with wetted plastic balls were used to simulate the high humidity conditions of real food storage. The initial MAP condition was 5% oxygen and 95% nitrogen, and the $O_2$ concentration, the relative humidity and water condensation inside the films were checked on a daily basis. The MAP test for tomatoes was conducted by using the most appropriate film from the five films examined in this study. Results: Every film except Mosspack(R) indicated a similar variation in the $O_2$ concentration over the course of time. The relative humidity near the surfaces of all the films except nylon-6 approached saturation conditions over time. For three kinds of films, namely, low-density polyethylene (LDPE) film, anti-fogging oriented polypropylene (AFOPP) film, and Mosspack(R), the inner surfaces of the films were fully covered with dew after a storage period of a day. Conversely, an area of 4.5% was covered with dew in the case of the poly lactic acid (PLA) film, and there was no dew inside the nylon-6 film. The pallet-size MAP test for tomatoes was conducted by using the nylon-6 film and there was no water condensation inside the nylon-6 film over three weeks of storage. Conclusions: During the pallet scale MAP, water condensation could cause severe fungal infection and wetting of the corrugated box. Hence, it was important to minimize water condensation. This study showed that the MAP films with high WVTR such as nylon-6 and PLA could reduce the water condensation inside the pallet scale MAP.

Effects of MA Storage with NaCl for Red Chili Pepper and Red Bell Pepper Fruits (NaCl을 이용한 홍고추 및 홍피망의 MA저장 효과)

  • 정천순;이귀현
    • Food Science and Preservation
    • /
    • v.9 no.1
    • /
    • pp.8-13
    • /
    • 2002
  • The effects of modified atmosphere (MA) storage far fresh red pepper and red bell pepper fruits were investigated with storing in high and few density polyethylene films (HDPE, LDPE) with various NaCl contents(0 g, 15 g, 20 g, 25 g). During the storage of pepper fruits, the weight loss, color change, mold emergence, and firmness were evaluated. The weight loss of pepper fruits packaged in HDPE and LDPE without NaCl was 3∼5%, even though it was 6∼19% in pepper fruits packaged with NaCl. The lutes of mold emergence of red pepper and red bell pepper fruits were lowered to 20∼45% as stored in HDPE and LDPE with NaCl but those of fruits stored in films without NaCl were high as 55∼65%. The color and firmness of pepper fruits were not much changed in comparison with those of non-packaged fruits as stored in HDPE and LDPE with or without NaCl.

Analysis of Degradation Behaviors of Geomembrane by Accelerated Test under UV Exposure Conditions (자외선 노출조건 하에서 가속시험에 의한 지오멤브레인의 분해거동 해석)

  • Park, Yeong Mog;Khan, Belas Ahmed;Jeon, Han Yong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.5-14
    • /
    • 2013
  • In this paper the effect of UV (ultraviolet) exposure on HDPE (high density polyethylene)-smooth and f-PP (flexible polypropylene) geomembranes is evaluated under UVB-313 (ultraviolet wavelength 290-315 nm) exposure. Tensile property, melt flow index (MFI), oxidation induction time (OIT), both standard-OIT and high pressure-OIT and Fourier transform infrared spectroscopy/attenuated total reflectance (FTIR/ATR) results are discussed. Although tensile properties of the exposed geomembrane samples remained unchanged, the depletion of antioxidants was found higher for f-PP than for HDPE geomembrane. Arrhenius model by extrapolation was used on the data to predict the antioxidant lifetime to a typical site temperature of $20^{\circ}C$. There was no significant difference between the MFI value of the virgin and UV exposed HDPE geomembrane samples but a decrease in MFI was found in f-PP geomembrane that signifies that crosslinking has occurred. From FTIR spectra, the small peak (near $1750\;cm^{-1}$) observed in the spectrum of UV exposed sample corresponds to a carbonyl (C=O) linkage, which suggests that oxidation has occurred in the polymer structure, and another new band for f-PP between 3100 and $3500\;cm^{-1}$ is attributed to a hydroxyl bond and/or hydroperoxide bond.

Effect of Biodegradable Film Mulching on Soil Environment and Onion Growth and Yield (생분해성 멀칭필름이 토양환경과 양파 생육 및 수량에 미치는 영향)

  • Ji-Sik Jung;Do-Won Park;Hyun-Sug Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.3
    • /
    • pp.207-215
    • /
    • 2023
  • This study was compared the soil environment and growth and yield of onion (Allium cepa L.) treated with non-mulching (NM) and mulching polyethylene film (PEF) and two biodegradable films (BFI and BFII) commonly used in farmhouses. Visual observation confirmed the degradation of BFI and BFII films after 150 days after tansplanting (DAT). BFII increased light penetration into the films and reduced the weight maintenace after 180 DAT, with a high decompostion at 30 days after soil tilling. Soil moisture contents much fluctuated between -14 kP and - 0 kPa in NM plots, increasing the minimum soil temperature of BFI plots. Mulching treatments decreased soil organic matter contents but did not subtantially increase soil mineral nutrients, soil bulk density, and number of bacteria compared to those of NM plots. Onion root growth was increased by PEF and BFI treatments at an early growth stage, 60 DAT, with the most remarkable stem extension observed for PEF and BFI treatments after 150 DAT. PEF and BFI treatments increased the bulb's diameter, length, weight, and lodging at 180 DAT. BFI treatments exhibited a high portion of the "very large" category producing with 55.3 tons ha-1 based on the classification into bulb size, followed by PE (49.3 tons), NM (9.4 tons), and BFII treatments (2.7 tons) at 230 DAT.

In vitro Biocompatibility Evaluation of Biomaterial-elution Using Inflammatory Cell Lines (염증세포주를 이용한 생체재료 용출물의 체외 생체적합성 평가)

  • Shin, Youn-Ho;Song, Kye-Yong;Seo, Min-Ji;Kim, Sung-Min;Park, Jung-Keug;Kim, Dong-Sup;Park, Ki-Jung;Hur, Chan-Hoi;Cha, Ji-Hun;Seo, Young-Kwon
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.248-254
    • /
    • 2011
  • Various biometerials have been researched and have been developed for treatment of some disease through transplantation to body. They have been evaluated by in vitro cytotoxicity test using some skin-derived cell lines for prediction of their biocompatibility in vivo. However, the results of experiments using mesenchymal or epithelial cells could not be considered in vivo immune reaction. In this study, we evaluated the biomaterial-elution (elute from high density polyethylene film) using some cell lines (L929, Jurkat, U937) in vitro, and then that results were compared with in vivo results from guinea pig sensitization test. In sensitization test, saline and elution of syringe could not induce erythema, but only DNCB (hypersensitive chemical) induce erythema at guinea pig sensitization test. In cell experiment, the cytotoxicity results of inflammatory cells (Jurkat; T lymphocyte, U937; monocyte) was no difference with L929 (fibroblast) in the overall trend. However, inflammatory cell lines were only secreted inflammatory cytokine (TNF-${\alpha}$, INF-${\gamma}$) in some materials (biomateriallution, FAC, DNCB). And the biomaterial-elution did not have toxicity to the cells, but it induced the inflammatory cytokines in inflammatory cell lines only. So, we were predicted inflammatory reaction through the cytokine resultes of inflammatory cell lines, and it was more correlated with in vivo results than cytotoxicity test. Therefore, we suggested that the inflammatory cytokine assay using inflammatory cell lines are more effective method in vitro for evaluation of biocompatibility of biomaterials or chemicals.

Modified Atmosphere Packaging of Minimally Processed Cut Garlic (최소가공된 절단 마늘의 환경기체조절포장)

  • Kwon, Min-Ji;Shin, Yong-Jae;Lee, Dong-Sun;An, Duck-Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • There is a need in food industry to store minimally processed garlic for long time to have it be used just at the time of demand for final product processing. Optimal modified atmosphere packaging is expected to slow down the quality change extending its storage life. In order to find optimal packaging conditions, plastic films of different gas permeability properties (low density polyethylene (LDPE) $30{\mu}m$, polyolefin $50{\mu}m$ (PD 900), polyolefin $20{\mu}m$ (PD 941)) were used for packaging 400 g of minimally processed garlic. Perforated LDPE packages were prepared as control. The packaged products were stored at $1{\pm}1^{\circ}C$ for 52 days. Package treatments were compared in weight loss, decay, surface color, hardness and soluble solid content. While control package had normal atmosphere of air, LDPE, PD 900 and PD 941 packages attained internal concentration of $O_2$ 4.6% / $CO_2$ 12%, $O_2$ 0.9% / $CO_2$ 21% and $O_2$ 0.5% / $CO_2$ 13% after 45 days, respectively. Control packaging had rapid weight loss with high mold decay and great surface color change in 45 days. In PD 900 film packages of lowest gas permeability, the fresh-cut garlic could be stored without mold decay for 52 days. Except control packaging, there were no significant differences in surface color, hardness and soluble solid content among package treatments.

  • PDF

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.