• 제목/요약/키워드: High-cycle fatigue behavior

검색결과 94건 처리시간 0.027초

Fe-29%Ni-17%Co 저열팽창 합금의 피로 특성에 미치는 알파상의 영향 (Effects of Alpha Phase on the Fatigue Properties of Fe-29%Ni-17%Co Low Thermal Expansion Alloy)

  • 김민종;권진한;조규상;이기안
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.481-487
    • /
    • 2014
  • The effect of alpha phase on the fatigue properties of Fe-29%Ni-17%Co low thermal expansion alloy was investigated. Two kinds of alloys (Base alloy and Alpha alloy) were prepared by controlling the minimal alloy composition. Microstructure observation, tensile, high-cycle fatigue, and low-cycle fatigue results were measured in this study. The Base alloy microstructure showed typical austenite ${\gamma}$ phase. Alpha alloy represented the dispersed phase in the austenite ${\gamma}$ matrix. As a result of tensile testing, Alpha alloy was found to have higher strengths (Y.S. & T.S.) and lower elongation compared to those of the Base alloy. High cycle fatigue results showed that Alpha alloy had a higher fatigue limit (360MPa) than that (330MPa) of the Base alloy. The Alpha alloy exhibited the superior high cycle fatigue property in all of the fatigue stress conditions. SEM fractography results showed that the alpha phase could act to effectively retard both fatigue crack initiation and crack propagation. In the case of low-cycle fatigue, the Base alloy had longer fatigue life in the high plastic strain amplitude region and the Alpha alloy showed better fatigue property only in the low plastic strain amplitude region. The fatigue deformation behavior of the Fe-29%Ni-17%Co alloy was also discussed as related with its microstructure.

J파라미터를 이용한 고온피로균열전파 거동에 미치는 응력파형 영향의 연구 (A Study of the Effect of Stress Waveform on the Behavior of High Temp. Fatigue Crack Propagation Using J Parameters)

  • 허정원;박원조
    • 한국안전학회지
    • /
    • 제15권2호
    • /
    • pp.8-12
    • /
    • 2000
  • The fatigue crack propagation tests were performed in triangular and holding-time stress waveforms at $650^{\circ}C$. The behavior of fatigue crack propagation was investigated according to waveform. The analysis of high temperature fatigue crack propagation by the stress intensity factor range ${\Delta}K$, elastic fracture mechanics parameter, was not available. The behaviors of high temperature fatigue crack propagation by the J-integral(${\Delta}J_f$, J' and ${\Delta}J_c$), elasto-plastic fracture mechanics parameter, were investigated in a number of stress waveforms. The fast-fast waveform exhibited cycle-dependent(fatigue type), the slow-fast and the hold time with 500sec waveforms appear to be time-dependent(creep type) and the fast-slow and the hold time with 5, 25sec waveforms exhibited conbined behavior of both types(fatigue-creep conbined type).

  • PDF

원전 안전 3등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 굽힘 피로특성 평가 (Investigation of Bending Fatigue Behaviors of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants)

  • 김종성;이영주;오영진
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.40-44
    • /
    • 2015
  • The fatigue behavior of thermal butt fusion in safety class III high-density polyethylene (HDPE) buried piping for nuclear power plants was investigated using load-controlled bending fatigue on four-point bend test specimens. Based on the results, the presence of thermal butt fusion beads was confirmed to reduce the fatigue lifetime in the low- and medium-cycle fatigue regions while having a negligible effect in the high-cycle fatigue regions.

Fatigue life curves of alloy 617 in the temperature range of 800-950℃

  • Injin Sah;Jaehwan Park;Eung-Seon Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.546-554
    • /
    • 2023
  • The cyclical behavior of Alloy 617 was examined at 25 ℃ and high temperatures of 800, 850, 900, and 950 ℃ in air to obtain its fatigue life curves. The specimens tested at 25, 800, and 850 ℃ cyclically hardened, whereas those tested above 900 ℃ cyclically softened from the first cycle, that is, their fatigue life was reduced at high temperatures owing to loss of strength. Parameters of the typical Coffin-Manson-Basquin relationship were determined for each test temperature. Interestingly, no significant difference in fatigue life was observed for the specimens tested in the range of 800-950 ℃. Owing to the similarity in fatigue life, we determined fatigue strength and fatigue ductility exponents that could be applied for this temperature range. The parameters obtained were close to the universal slopes, although the fatigue ductility exponent was slightly different. The proposed fatigue life curves were compared with those presented in ASME code.

Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구 (A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress)

  • 홍상혁;홍춘희;이현우
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

동 박막의 피로한도 (Fatigue Limit of Copper Film)

  • 허용학;김동진;이해무;홍성구;박준협
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1158-1162
    • /
    • 2009
  • Fatigue limit of the copper film coated by Sn was estimated using Goodman diagram and Gerber diagram. To obtain the high cycle fatigue life curve, S-N curve, of the film, the high cycle fatigue test was carried out by applying the constant amplitude load to the film specimen with three different stress ratio of 0.05, 0.3 and 0.5 and the frequency of 40 Hz at room temperature in air. The free-standing film specimen 15.26${\mu}m$ thick was fabricated by etching process. The fatigue limits and S-N curves at the respective stress ratios were determined from the experimental works. It was shown that the S-N curves were dependent on the stress ratio and the fatigue limit was increased with decreasing the stress ratio. The dependency of the fatigue behavior was presented in empirical relationship. Using these relationships, the fatigue limit was predicted.

화력발전소 증기터빈용 12Cr 강의 저주기 피로거동 (Low Cycle Fatigue Behavior of 12Cr Steel for Thermal Power Plant Steam Turbine)

  • 강명수
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.71-76
    • /
    • 2002
  • In this study low cycle fatigue (LCF) behavior of 12Cr steel at high temperature are described. Secondly, comparisons between predicted lives and experimental lives are made for the several sample life prediction models. Two minute hold period in either tension or compression reduce the number of cycles to failure by about a factor of two. Twenty minute hold periods in compression lead to shorter lives than 2 minute hold periods in compression. Experiments showed that life predictions from classical phenomenological models have limitations. More LCF experiments should be pursued to gain understanding of the physical damage mechanisms and to allow the development of physically-based models which can enhance the accuracy of the predictions of components. From a design point-of-view, life prediction has been judged acceptable for these particular loading conditions but extrapolations to thermo-mechanical fatigue loading, for example, require more sophisticated models including physical damage mechanisms.

사용피로하중에 대한 철근 콘크리트 구조물의 균열특성 (Crack Behavior of RC Structures under High Cycle Loading)

  • 강보순
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.495-499
    • /
    • 2005
  • Fatigue behavior of reinforced concrete(RC) elements has been experimentally and analytical investigated. Fatigue behavior is influenced by a longitudinal reinforcement ratio, strength of concrete and a load ratio Pu/Po. The purpose of this study to propose an empirical formula for the fatigue behavior on the basis of experimental results. Also an analytical method to predict the crack propagation of RC beams has been developed based on the relationships between bond stress and slip.

원전 안전 3 등급 고밀도 폴리에틸렌 매설 배관 맞대기 열 융착부의 인장 피로특성 평가 (Study on Tensile Fatigue Behavior of Thermal Butt Fusion in Safety Class III High-Density Polyethylene Buried Piping in Nuclear Power Plants)

  • 김종성;이영주;오영진
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.11-17
    • /
    • 2015
  • 최근에 원자력 발전소 안전 3 등급 배관에 적용되고 있는 고밀도 폴리에틸렌 배관은 융착표면을가열한 후 축방향으로 가압하는 열 융착 공정을 이용하여 맞대기 융착되어진다. 이러한 열 융착공정은 맞대기 융착부에 비드 형상을 발생시킨다. 이러한 비드 형상의 응력집중에 기인하여 피로수명이 줄어들 수 있다. 따라서 피로거동에 미치는 맞대기 열 융착부 비드의 효과를 고찰하는 것이 필요하다. 본 연구에서는 응력 제어 조건 하의 인장 피로 시험과 유한요소 탄성응력 해석을 수행하여 맞대기 열 융착부의 인장 피로 거동을 고찰하였다. 고찰 결과, 중주기 및 고주기 피로 영역에선 피로수명에 미치는 비드의 영향이 미미한 반면 저주기 피로 영역에선 비드의 존재가 피로 수명을 감소시킴을 확인하였다.

(Mg + Al2Ca)로 개량된 AA7075 합금의 미세조직, 기계적 특성, 그리고 고주기 피로 특성에 미치는 T6 및 T73 열처리의 효과 (Effect of T6 and T73 Heat Treatments on Microstructure, Mechanical Responses and High Cycle Fatigue Properties of AA7075 Alloy Modified with Mg and Al2Ca)

  • 황유진;김관영;김규식;김세광;윤영옥;이기안
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.5-15
    • /
    • 2021
  • The effects of heat treatments (T6 and T73) on the microstructure, mechanical properties, and high cycle fatigue behavior of modified AA7075 alloys were investigated. A modified 7075 alloy was manufactured using modified-Mg (Mg-Al2Ca) instead of the conventional element Mg. Based on the microstructure, the average grain size was 4.5 ㎛ (T6) and 5.2 ㎛ (T73). Regardless of heat treatment, the modified AA7075 alloys consisted of Al matrix containing homogeneously distributed Al2CuMg and MgZn2 phases with reduced Fe-intermetallic compound. Room temperature tensile tests showed that the properties of modified 7075-T6 (Y.S.: 622MPa, T.S: 675MPa, elongation: 15.4%) were superior to those of T73 alloy (Y.S.: 492MPa, T.S: 548MPa, elongation: 12.8%). Experimental data show that the fatigue life of T6 was 400 MPa, about 64% of its yield strength. However, the fatigue life of T73 alloy was 330 MPa and 67%. Irrespective of the stress level, all crack initiation points were located on the specimen surface, and no inclusions acting as stress concentrators were seen. Superior mechanical properties and high cycle fatigue behavior of modified AA7075-T6 alloy are attributed to the fine grains and homogeneous distribution of small second phases such as MgZn2 and Al2CuMg, in addition to reduced Fe-intermetallic compounds.