• Title/Summary/Keyword: High-capacity

Search Result 8,087, Processing Time 0.038 seconds

Experimental and analytical investigation of high-strength concrete-filled steel tube square columns subjected to flexural loading

  • Chung, Kyung-Soo;Kim, Jin-Ho;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • v.14 no.2
    • /
    • pp.133-153
    • /
    • 2013
  • The concrete-filled steel tube (CFT) columns have several benefits of high load-bearing capacity, inherent ductility and toughness because of the confinement effect of the steel tube on concrete and the restraining effect of the concrete on local buckling of steel tube. However, the experimental research into the behavior of square CFT columns consisting of high-strength steel and high-strength concrete is limited. Six full scale CFT specimens were tested under flexural moment. The CFT columns consisted of high-strength steel tubes ($f_y$ = 325 MPa, 555 MPa, 900 MPa) and high-strength concrete ($f_{ck}$ = 80 MPa and 120 MPa). The ultimate capacity of high strength square CFT columns was compared with AISC-LRFD design code. Also, this study was focused on investigating the effect of high-strength materials on the structural behavior and the mathematical models of the steel tube and concrete. Nonlinear fiber element analyses were conducted based on the material model considering the cyclic bending behavior of high-strength CFT members. The results obtained from the numerical analyses were compared with the experimental results. It was found that the numerical analysis results agree well with the experimental results.

Effects of taeeumjoweetang Herbal-Acupuncture on plasma and liver lipid composition and antioxidative capacity in rat fed high fat diet (태음조위탕(太陰調胃湯) 약침(藥鍼)이 고지방 급여 흰쥐의 혈장 및 간장의 지질구성과 항산화능에 미치는 영향)

  • Lim, Yun-Taek;Lee, Joon-Moo
    • Korean Journal of Acupuncture
    • /
    • v.22 no.2
    • /
    • pp.151-161
    • /
    • 2005
  • Objectives : In order to measure the Effects of taeeumjoweetang Herbal- Acupuncture at joksamri(ST36) and kwanweun(CV4) on liver and plasma lipid composition and antioxidative capacity in rat fed high fat diet. Results : Concentrations of plasma triglyceride, total cholesterol and LDL-cholesterol showed a tendency to increase in the high fat diet group. However Herbal-Acupuncture groups showed a lower values than control groups. HDL-cholesterol showed a tendensy to decrease in high 131 fat diet groups and in high fat diet groups, these values showed no significantly different. Liver total cholesterol values showed no significantly different in all treatment groups. Triglyceride concentration showed a high value in control group and other treatment groups showed no significantly different. plasma GOT and GPT values showed a tendency to increase in high fat diet group. however these values decreased in Herbal-Acupuncture group. The concentration of TBARS in liver and plasma showed a high values in high fat diet group, however these values showed a tendency to decrease in aqua- acupuncture group. Glutathione peroxidase, superoxide dismutase and catalase activity values showed a low values in high fat diet group, however these values showed a tendency to increase in Herbal-Acupuncture group.

  • PDF

Predicting the flexural capacity of RC beam with partially unbonded steel reinforcement

  • Wang, Xiao-Hui;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.235-252
    • /
    • 2009
  • Due to the reduction of bond strength resulting from the high corrosion level of reinforcing bars, influence of this reduction on flexural capacity of reinforced concrete (RC) beam should be considered. An extreme case is considered, where bond strength is complete lost and/or the tensile steel are exposed due to heavy corrosion over a fraction of the beam length. A compatibility condition of deformations of the RC beam with partially unbonded length is proposed. Flexural capacity of this kind of RC beam is predicted by combining the proposed compatibility condition of deformations with equilibrium condition of forces. Comparison between the model's predictions with the experimental results published in the literature shows the practicability of the proposed model. Finally, influence of some parameters on the flexural capacity of RC beam with partially unbonded length is discussed. It is concluded that the flexural capacity of the beam may not be influenced by the completely loss of bond of the whole beam span as long as the tensile steel can yield; whether or not the reduction of the flexural capacity of the beam resulting from the loss of bond over certain length may occur depends on the detailed parameters of the given beam.

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

Capacity of a transmission tower under downburst wind loading

  • Mara, T.G.;Hong, H.P.;Lee, C.S.;Ho, T.C.E.
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-87
    • /
    • 2016
  • The wind velocity profile over the height of a structure in high intensity wind (HIW) events, such as downbursts, differs from that associated with atmospheric boundary layer (ABL) winds. Current design codes for lattice transmission structures contain only limited advice on the treatment of HIW effects, and structural design is carried out using wind load profiles and response factors derived for ABL winds. The present study assesses the load-deformation curve (capacity curve) of a transmission tower under modeled downburst wind loading, and compares it with that obtained for an ABL wind loading profile. The analysis considers nonlinear inelastic response under simulated downburst wind fields. The capacity curve is represented using the relationship between the base shear and the maximum tip displacement. The results indicate that the capacity curve remains relatively consistent between different downburst scenarios and an ABL loading profile. The use of the capacity curve avoids the difficulty associated with defining a reference wind speed and corresponding wind profile that are adequate and applicable for downburst and ABL winds, thereby allowing a direct comparison of response under synoptic and downburst events. Uncertainty propagation analysis is carried out to evaluate the tower capacity by considering the uncertainty in material properties and geometric variables. The results indicated the coefficient of variation of the tower capacity is small compared to those associated with extreme wind speeds.

Evaluation of Interconnection Capacity of SCOGNs to the power Distribution Systems from the Viewpoint of Voltage Regulation (전압조정 측면에서 본 소형 열병합발전 배전계통 도입량 평가)

  • 최준호;김재철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1096-1102
    • /
    • 1999
  • This paper discusses the evaluation of interconnection capacity of small cogeneration(SCOGN) systems to the power distribution systems from the viewpoint of voltage regulation. Power utilities are required to keep the customers' voltage profile over a feeder close to the rated value under all load conditions. However, it is expected that the interconnection of SCOGNs to the power distribution systems impacts on the existing voltage regulation method and customers' voltage variations. Therefore, SCOGNs should be integrated to the automated power distribution systems to prevent interconnection problems and supply high quality electricity to the customers. For these reasons, we should proceed with the evaluation of interconnection capacity of SCOGNs to the power distribution systems. However, it is generally impossible to perform actual testing on the power distribution systems, and standardized methodologies and guidelines are not developed to evaluate it. The criterion indexes for voltage regulation and variations are presented in order to evaluate the interconnection capacity of SCOGNs to the power distribution systems. In addition, the evaluation methodology of interconnection capacity of SCOGNs for power distribution systems is presented. It is expected that the resulted of this paper are useful for power system planners to determine the interconnection capacity of SCOGNs and dispersed storage and generation (DSG) systems to the power distribution systems.

  • PDF

Capacity Characteristics of the Indoor Propagation Channel for MIMO System at 5 GHz (5GHz 대역 MIMO 시스템에 대한 실내 전파 채널용량 특성)

  • Ryu, Seong-Hyun;Kim, Jung-Ha;Kwon, Se-Woong;Yoon, Young-Joong
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.43-46
    • /
    • 2003
  • This paper presents capacity characteristics of the indoor LOS(Line-Of-Sight) propagation channel for MIMO system at 5GHz. The distance between antenna elements, their moving path, and number of transmitting and receiving antennas can be determined by wanted eigen-vlaue, and channel capacity of the MIMO communication channel using only reliable simulation without measurements. The simulation uses 3D Ray tracing and patch scattering model to which electromagnetic material constants are applied. As distance between antenna elements increases, distribution of the eigen-value show a tendency to decrease, but channel capacity increases in LOS environment. However, despite of short distance between antenna elements, large value of channel capacity is obtained in positions which have high AS. When the position of receiver antennas are shifted, channel capacity hardly changed, and as number of antenna elements increases, channel capacity also increases regularly.

  • PDF

Functional Properties of Calcium Powder of Cuttle Bone Treated with Acetic Acid (아세트산 처리 갑오징어갑 칼슘제의 기능적 특성)

  • KIM Jin-Soo;CHO Moon-Lae;HEU Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.74-79
    • /
    • 2003
  • The functional properties such as a firming maintenance capacity for fermented vegetables, protein coagulation capacity antibacterial activity, calcium and peroxide absorption capacity of calcium powder of cuttle bone treated with acetic acid (ATC) were examined. In the Korean pickled cucumbers (20 days), the calcium content of ethanol insoluble solids was 5,264.9 mg/100 g and this value was higher than that of control (2,036.4 mg/100 g). Protein coagulation capacity of ATC was $0.9\%$ and its calcium absorption capacity was $49.3\%.$ The peroxide absorption capacity of ATC was shown $0-1.1\%$ range. Antibacterial activity was detected above $0.2\%.$ The ATC was effective in a firming maintenance of fermented vegetables (cucumber), coagulation capacities for soybean milk and antibacterial activity. The ATC was not effective in clarifying wastewater. Peroxide absorption capacity toward linoleic acid could not be checked by ATC, but its calcium absorption ratio was high compared to that of commercial calcium powder.

Effect of Austempering Treatment on Damping Capacity and Mechanical Properties in Gray Cast Iron (회주철의 진동감쇠능과 기계적 성질에 미치는 오스템퍼링처리의 영향)

  • Han, D.W.;Kim, J.C.;Son, Y.C.;Baik, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.2
    • /
    • pp.108-116
    • /
    • 1999
  • Gray cast iron with a high damping capacity has been used for controlling the vibration and noise in various mechanical structures. Nevertheless, its usage has been often restricted due to its poor tensile strength. Therefore, it is necessary to improve tensile strength at the expense of a loss in damping capacity. This study is aimed at finding the best combination of tensile strength and damping capacity by varying austempering time and temperature range from $320^{\circ}C$ to $380^{\circ}C$ after austenization at $900^{\circ}C$ for 1hr. The effect of austempering condition on hardness and the volume fraction of retained austenite is investigated as well. The results obtained are summarized as follows : (1) With an increase in austempering temperature, both tensile strength and hardness decrease while damping capacity improves. (2) Austempering at $350^{\circ}C$, resulting in a mixture of upper and lower bainite with partially retained austenite, exhibits the optimum combination of tensile strength and damping capacity.

  • PDF

Capacity Bounds on the Ergodic Capacity of Distributed MIMO Systems over K Fading Channels

  • Li, XingWang;Wang, Junfeng;Li, Lihua;Cavalcante, Charles C.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.7
    • /
    • pp.2992-3009
    • /
    • 2016
  • The performance of D-MIMO systems is not only affected by multipath fading but also from shadowing fading, as well as path loss. In this paper, we investigate the ergodic capacity of D-MIMO systems operating in non-correlated K fading (Rayleigh/Gamma) channels. With the aid of majorization and Minkowski theory, we derive analytical closed-form expressions of the upper and lower bounds on the ergodic capacity for D-MIMO systems over non-correlated K fading channels, which are quite general and applicable for arbitrary signal-to-noise ratio (SNR) and the number of transceiver antennas. To intuitively reveal the impacts of system and fading parameters on the ergodic capacity, we deduce asymptotic approximations in the high and low SNR regimes. Finally, we pursue the massive MIMO systems analysis for the lower bound and derive closed-form expressions when the number of antennas at BS grows large, and when the number of antennas at transceivers becomes large with a fixed and finite ratio. It is demonstrated that the proposed expressions on the ergodic capacity accurately match with the theoretical analysis.