• Title/Summary/Keyword: High-capacity

Search Result 8,087, Processing Time 0.044 seconds

Flexural Capacity Evaluation of High-strength New-shape Composite Pile (S-Pile) for the Soldier Pile in the C.I.P Method (주열식공법 엄지말뚝을 위한 고강도 신형상 합성파일 (S-Pile)의 휨성능 평가)

  • Lee, Kyung-koo;Kim, Dae-Hee;Joo, Eun-Hee;Kim, Young-Gi;Kim, Bong-Chan;Lee, Ji-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.185-186
    • /
    • 2021
  • In Korea, many buildings are built with underground spaces and cast-in-place pile method is mostly applied in the temporary retaining walls for the underground space construction. A H-shaped steel section is generally embedded in the soldier pile in the C.I.P method. In this study, a new and economical section with high strength steel replacing the H-shaped section was proposed and its flexural capacity was evaluated experimentally. The new section is the concrete-filled composite section with pentagonal thin plate and thick flange plate. Test results showed that the proposed section has an excellent flexural strength and ductility.

  • PDF

The influence of Ca doping on the capacity fading of LiNi0.8Co0.1Mn0.1O2 cathode material

  • Chea-Yun Kang;Seung-Hwan Lee
    • Journal of Ceramic Processing Research
    • /
    • v.23 no.2
    • /
    • pp.109-112
    • /
    • 2022
  • Ni-rich layered material can be regarded as an one of the promising cathode for high-energy lithium ion batteries. In this paper, Ca-doped Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material is prepared to investigate the effect of Ca doping on the structural properties and electrochemical performances. In structural properties, there is no obvious difference between the two samples in terms of crystallinity or morphology. In electrochemical performances, the initial capacity and electrochemical behavior are almost identical, while the degree of capacity deterioration in long-term cycle performance is obviously different. This is because Ca doping can increase the bond dissociation energy and pathways for electrons and lithium ions.

Impact of Temporary Link Blockage on Ergodic Capacity of FSO System

  • Petkovic, Milica I.;Djordjevic, Goran T.
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.330-336
    • /
    • 2018
  • Free-space optical (FSO) systems have attracted much attention from both research and application perspectives owing to their many benefits, such as license-free operation, low-cost, and high data rates. This paper investigates the ergodic capacity of FSO systems, which is an important metric of system performance. The stochastic temporary laser-beam blockage, pointing errors, and atmospheric turbulence are simultaneously considered. The results illustrate that the link blockage causes a decreased ergodic capacity. We show that to maximize the ergodic capacity, there is an optimal value of the laser-beam radius at the waist, which largely depends on pointing errors; however, it is independent of the atmospheric turbulence and the probability of link blockage.

A Study on Iron Electrode of Ni/Fe Battery(II) (니켈/철 축전지의 철전극에 관한 연구(II))

  • 김운석;박성용;조원일;조병원;윤경석
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.300-307
    • /
    • 1993
  • To develop high performance nickel-iron secondary battery, the characteristics of charge-discharge reaction of iron electrode were examined by cyclic voltammetry technique, SEM and XRD analysis. The capacity of the test electrodes was determined by the constant current charge-discharge method. It was found that the temperature and concentration of electrolyte were the major determinant factors of electrode capacity, and especially the 1st discharge capacity was increased with the increase of temperature. The effect of fore forming agent on the electrode capacity was negligible. The electrode capacity was above 350 ㎃h/g(36% utility) at 0.25C discharge rate. The stability of electrode was very good, but the activation occurred slowly.

  • PDF

On the development of Intelligent Railway Logistics Terminal (지능형 고효율 철도물류터미널 구축 방안)

  • Kim, Dong-Hee;Hong, Soon-Heum;Kim, Young-Hoon;Kim, Kyoung-Hee;Kim, Kyoung-Min
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1596-1602
    • /
    • 2010
  • The government have plans to improve the railway transport capacity and transport hub for the sustainable national transport and logistics system. Specially, there are much efforts to improve transportation capacity such as high speed transportation of rail freight, enlargement of BT train, development of double stack train, etc. between railway transport hubs. If the transport capacity between railway logistics hubs is increased as planned, we must increase the handling capacity of railway hub terminals. But there are limits to enlarge the terminal infrastructure because of investment scale, location circumstances and urban development plans. To ensure the capacity, with the minimum required enlargement of infrastructure, it is necessary to extremely increase the efficiency of terminal operations. For improving the efficiency, we have to introduce the efficient terminal operation systems based on u-IT and operation optimize technologies. In this paper, we analyse the issues and problems of railway terminals(including ICD) and suggest the concept of intelligent railway terminal and the construction components of technology.

  • PDF

Ultimate Strength of Composite Beams with Unreinforced Web Opening (유공 합성보의 강도식에 관한 연구)

  • 김창호;박종원;김희구
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.101-110
    • /
    • 2000
  • A practical approach of calculating the ultimate strength of composite beams with unreinforced web opning is proposed through shear behavioral tests. In this method, the slab shear contribution at the opening is calculated as the smaller value of the pullout capacity of shear connector at the high moment end and the one way shear capacity of slab. A simple interaction equation is used to predict the ultimate strength under simultaneous bending moment and shear force. Strength prediction by the proposed method is compared with previous test results and the predictions by other analytical methods. The comparison shows that the proposed method predicts the ultimate capacity with resonable accuracy.

A Study on The Load Capacity of Doubly-Stepped Journal Bearing (공기윤활베어링의 부하용량 증대에 관한 연구)

  • ;;Kim, Hho Jung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.1
    • /
    • pp.35-41
    • /
    • 1979
  • In order to improve the load capacity of externally pressurized air-lubeicatedjournal bearings, a new type(doubly-stepped type) bearing was revised and experimented. Through the results of experiment, the load capacity of doubly-stepped bearings was discussed and compared with equivalent conventional circular journal bearings. Results were obtained for speed up to 18000rpm and for supply pressure ratio(Ps/Pa) 4.8,6,7. Compared with equivalent conventional bearings, doubly-stepped bearings resultd a high gain in load capacity. It is also shown that the increasing rate of load capacith increases with decreasing the eccentricity ratio. Furthermore, the increasing rate is higher in the case of great clearanceratio than small dleatance ratio of doubly-stepped bearings. Such an increase in load capacity is confirmed by pressure distributions in the bearings.

Impacts on short-circuit capacity by interconnection of new energy source generation into the distribution system (신 에너지전원설비의 배전계통 연계에 의한 단락용량 검토)

  • Kim, Eung-Sang;Kim, Seul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.476-479
    • /
    • 2001
  • Interconnection of new energy sources, such as photovoltaic generation, wind power generation, etc., into the electric power distribution system may result in the increasing short-circuit capacity when a short circuit fault occurs. The short-circuit capacity becomes over the interrupting ratings of circuit breakers, and then they fails to operate in the proper way they prevent fault currents from flowing into the distribution facilities and thus causing them serious damages. This study deals with impacts on the respective short-circuit capacity of both low voltage and extra high voltage distribution systems at which new energy sources are installed. In order to obtain more accurate and all-case values very close to reality in the complicated distribution system, computer simulation tools should be required. In this paper, however, its focus is placed on examining the varying trend of short-circuit capacity, which may happen owing to new energy source interconnection, as a previewing step for exhaustive simulation studies.

  • PDF

Binding Capacity of Chitin and Chitosan to Anthocyanin Pigment Isolated from Purple Perilla Leaves

  • Chang, Eun-Ju;Park, Sang-Won;No, Hong-Kyoon
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • The binding capacity of chitin and chitosan to anthocyanin pigmentss isolated from purple perilla leaves was inves-tigated. The pigment binding capacity increased with increasing pigment concentrations and decreasing pH without being affected by reaction temperature and particle sizes. Regression analysis revealed significantly high corre-lations between pigment binding capacity of chitin and chitosan and pigment concentration at ranges of 25-100 mg of pigment/g of sample, After 1 hr settling, release of pigment from pigmented chitin and chitosan increased with increasing pH, up to 24.9% and 17.4%, respectively, at pH 9. In general, pigment binding capacity of chitosan was higher than that of chitin. There results suggest that chitosan may be useful as a potential adsorbent capable of stabilizing anthocyanin pigment.

  • PDF