• Title/Summary/Keyword: High-brightness

Search Result 884, Processing Time 0.029 seconds

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images (Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시)

  • Sihyun Lee;Yoojin Kang;Taejun Sung;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.979-995
    • /
    • 2023
  • As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.

The Value and Growing Characteristics of the Dicentra Spectabilis Community in Daea-ri, Wanju-gun, Jeollabuk-do as a Nature Reserve (전북 완주군 대아리 금낭화 Dicentra spectabilis 군락지의 천연보호구역적 가치와 생육특성)

  • Lee, Suk Woo;Rho, Jae Hyun;Oh, Hyun Kyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.1
    • /
    • pp.72-105
    • /
    • 2011
  • This study explores the value of the Dicentra spectabilis community as a nature reserve in provincial forests at San 1-2, Daea-ri, Dongsang-myeon, Wanju-gun, Jellabuk-do, also known as Gamakgol, while defining the appropriateness of its living environment and eventually providing basic information to protect this area. For these reasons, we investigated 'morphological and biological features of Dicentra spectabilis' and the 'present situation and problems of designing a herbaceous nature reserve in Korea.' Furthermore, we researched and analyzed the solar, soil and vegetation condition here through a field study in order to comprehend its nature reserve value. The result is as follows. According to the analytic result for information on the domestic wild Dicentra spectabilis community, it is evenly spread throughout mountainous areas, and there is one particularly outstanding in size in Wanju Gamakgol. Upon the findings from literature and the field study about its dispersion, Gamakgol has been discovered as an ideal district for Dicentra spectabilis since it meets all the conditions this plant requires to grow vigorously, such as a quasi-high altitude and rich precipitation during its period of active growth duration in May. Dicentra spectabilis grows in rocky soil ranging from 300~375m above sea level, 344.5m on average, towards the north, northwest and dominantly in the northeast. The mean inclination degree is $19.5^{\circ}$. Also, upon findings from analyzing solar conditions, the average light intensity during its growth duration, from Apr. to Aug., is 30,810lux on average and it tends to increase, as it gets closer to the end. This plant requires around 14,000~18,000lux while growing, but once bloomed, fruits develop regardless of the degree of brightness. The soil pH has shown a slight difference between the topsoil, at 5.2~6.1, and subsoil, at 5.2~6.2. Its mean pH is 5.54 for topsoil and 5.58 for subsoil. These results are very typical for Dicentra spectabilis to grow in, and other comparative areas also present similar conditions. Given the facts, the character of the soil in Gamakgol has been evaluated to have high stability. Analysis of its vegetation environment shows a wide variation of taxa numbering from 13 to 52 depending on area. The total number of taxa is 126 and they are a homogenous group while showing a variety of species as well. The Dicentra spectabilis community in the Daea-ri Arboretum is an herbaceous community consisting of dominantly Dicentra spectabilis, Cardamine leucantha, Boehmeria tricuspi and Impatiens textori while having many differential species such as Impatiens textori, Pueraria thunbergiana, Rubus crataegifolius vs Staphylea bumalda, Securinega suffruticosa, and Actinidia polygama. It suggests that it is a typical subcolony divided by topographic features and soil humidity. Considering the above results on a comprehensive level, this area is an excellent habitat for wild Dicentra spectabilis providing beautiful viewing enjoyment. Additionally, it is the largest wild colony of Dicentra spectabilis in Korea whose climate, topography, soil conditions and vegetation environment can secure sustainability as a wild habitat of Dicentra spectabilis. Therefore, We have determined that the Gamakgol community should be re-examined as natural asset owing to its established habitat conditions and sustainability.

Semantic Interpretation of the Name "Cheomseongdae" (첨성대 이름의 의미 해석)

  • Chang, Hwalsik
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.2-31
    • /
    • 2020
  • CheomSeongDae (瞻星臺) is a stone structure built in Gyeongju, the former Silla Dynasty capital, during the reign of Queen Seondeok (632~647AD). There exist dozens of hypotheses regarding its original purpose. Depending on to whom you ask, the answer could be a celestial observatory, a religious altar, a Buddhist stupa, a monumental tower symbolizing scientific knowledge, and so on. The most common perception of the structure among lay people is a stargazing tower. Historians, however, have suggested that it was intended as "a gateway to the heavens", specifically the Trāyastriṃśa or the second of the six heavens of Kāmadhātu located on the top of Mountain Sumeru. The name "Cheom-seong-dae" could be interpreted in many different ways. 'Cheom (瞻)' could refer to looking up, staring, or admiring, etc.; 'Seong (星)' could mean a star, heaven, night, etc.; and 'heaven' in that context can be a physical or religious reference. 'Dae (臺)' usually refers to a high platform on which people stand or things are placed. Researchers from the science fields often read 'cheom-seong' as 'looking at stars'; while historians read it as 'admiring the Trāyastriṃśa' or 'adoring Śakra'. Śakra is said to be the ruler of Trāyastriṃśa' who governs the Four Heavenly Kings in the Cāturmahārājika heaven, the first of the six heavens of Kāmadhātu. Śakra is the highest authority of the heavenly kings in direct contact with humankind. This paper examined the usages of 'cheom-seong' in Chinese literature dated prior to the publication of 『Samguk Yusa』, a late 13th century Korean Buddhist historical book that contains the oldest record of the structure among all extant historical texts. I found the oldest usage of cheom-seong (瞻星臺) in 『Ekottara Āgama』, a Buddhist script translated into Chinese in the late 4th century, and was surprised to learn that its meaning was 'looking up at the brightness left by Śakra'. I also found that 'cheom-seong' had been incorporated in various religious contexts, such as Hinduism, Confucianism, Buddhist, Christianism, and Taoism. In Buddhism, there was good, bad, and neutral cheom-seong. Good cheom-seong meant to look up to heaven in the practice of asceticism, reading the heavenly god's intentions, and achieving the mindfulness of Buddhism. Bad cheom-seong included all astrological fortunetelling activities performed outside the boundaries of Buddhism. Neutral cheom-seong is secular. It may help people to understand the nature of the physical world, but was considered to have little meaning unless relating to the spiritual world of Buddhism. Cheom-seong had been performed repetitively in the processes of constructing Buddhist temples in China. According to Buddhist scripts, Queen Māyā of Sakya, the birth mother of Gautama Buddha, died seven days after the birth of Buddha, and was reborn in the Trāyastriṃśa heaven. Buddha, before reaching nirvana, ascended from Jetavana to Trāyastriṃśa and spent three months together with his mother. Gautama Buddha then returned to the human world, stepping upon the stairs built by Viśvakarman, the deity of the creative power in Trāyastriṃśa. In later years, King Asoka built a stupa at the site where Buddha descended. Since then, people have believed that the stairway to the heavens appears at a Buddhist stupa. Carefully examining the paragraphic structure of 『Samguk Yusa』's records on Cheomseongdae, plus other historical records, the fact that the alignment between the tomb of Queen Seondeok and Cheomseongdae perfectly matches the sunrise direction at the winter solstice supports this paper's position that Chemseongdae, built in the early years of Queen SeonDeok's reign (632~647AD), was a gateway to the Trāyastriṃśa heaven, just like the stupa at the Daci Temple (慈恩寺) in China built in 654. The meaning of 'Cheom-seong-dae' thus turns out to be 'adoring Trāyastriṃśa stupa', not 'stargazing platform'.