• Title/Summary/Keyword: High-aspect-ratio

Search Result 950, Processing Time 0.029 seconds

Analysis of Peak Wind Pressure Coefficients of Penetration Type and End Type Pilotis (관통형과 단부형 필로티 천장부의 피크풍압계수 특성 분석)

  • You, Jang-Youl;Kim, Geun-Ho;Chae, Myung-Jin;Kim, Young-Moon;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • Various pilotis are installed in the lower part of high rise buildings. Strong winds can generate sudden airflow around the pilotis, which can cause unexpected internal airflow changes and may cause damage to the exterior of the piloti ceiling. The present study investigates the characteristics of peak wind pressure coefficient for the design of piloti ceiling exteriors by conducting wind pressure tests on high rise buildings equipped with penetration-type and end-type pilotis in urban and suburban areas. The minimum peak wind pressure coefficient for penetration-type piloti ceilings ranges from -2.0 to -3.3. Minimum peak wind pressure coefficient in urban areas was 30% larger than in suburban areas. In end-type piloti ceilings, maximum peak wind-pressure coefficient ranges from 0.5 to 1.9, and minimum peak wind-pressure coefficient ranges from -1.3 to -3.6. With changes in building height, peak wind pressure coefficient decreases as the aspect ratio increases. Peak wind-pressure coefficient increases with taller pilotis. On the other hand, when piloti height decreases, the absolute value of the minimum peak wind pressure coefficient increases.

Design of a Simply Structured High-efficiency Polarization-independent Multilayer Dielectric Grating for Spectral Beam Combining (SBC 시스템 구성을 위한 단순한 구조를 가지는 고효율 무편광 유전체 다층박막 회절격자 설계)

  • Cho, Hyun-Ju;Kim, Gwan-Ha;Kim, Dong Hwan;Lee, Yong-Soo;Kim, Sang-In;Cho, Joonyoung;Kim, Hyun Tae;Kwak, Young-seop
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • We design a polarization-independent dielectric multilayer thin-film diffraction grating for a spectral-beam-combining (SBC) system with a simple grating structure and low aspect ratio. To maintain the high quality of the SBC beam, we propose a multilayer mirror structure in which the wavefront distortion due to stress accumulation is minimized. Moreover, to prevent light absorption from contamination, an optimized design to minimize the grating thickness was performed. The optimally designed diffraction grating has 99.36% diffraction efficiency for -1st-order polarization-independent light, for incidence at the Littrow angle and 1055-nm wavelength. It is confirmed that the designed diffraction grating has sufficient process margin to secure a polarization-independent diffraction efficiency of 96% or greater.

Impact Test for Measurement of the Carbody Bending Modes of Railway Vehicle (철도차량 차체 굽힘모드 측정을 위한 충격시험)

  • Shin, Bum-Sik;Choi, Yeon-Sun
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.423-428
    • /
    • 2012
  • As the speed of high speed train increases, the prediction of ride comfort becomes important. The exciting frequencies due to rail irregularity in high-speed train closes to the second and third natural frequencies of the carbody. The dynamic characteristics of railway vehicles should be checked by modal analysis numerically and experimentally. In this study the bending test for railway vehicle is reviewed and the impact test is suggested to find the natural frequencies and the mode shapes of the carbody. The validity of the impact test is checked with the test for a sample plate which reflects the aspect ratio of the original carbody. The bending test by the impact and the displacement methods of JIS E7105 for a prototype carbody were done in the field and compared. The results show that the impact test can find more accurate natural frequencies and the mode shapes of the carbody than those of the displacement method.

Fabrication of $100{\mu}m$ High Metallic Structure Using Negative Thick Photoresist and Electroplating (Negative Thick Photoresist를 이용한 $100{\mu}m$ 높이의 금속 구조물의 제작에 관한 연구)

  • Chang, Hyun-Kee;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2541-2543
    • /
    • 1998
  • This paper describes the fabrication process to fabricate metallic structure of high aspect ratio using LlGA-like process. SU-8 is used as an electroplating mold. SU-8 is an epoxy-based photoresist, designed for ultrathick PR structure with single layer coating [1,2]. We can get more than $100{\mu}m$ thick layer by single coating with conventional spin coater, and applying multiple coating can make thicker layers. In the experiments, we used different kinds of SU-8, having different viscosity. To optimize the conditions for mold fabrication process, experiments are performed varying spinning time and speed, soft-bake, develop and PEB (Post Expose Bake) condition. With the optimized condition, minimum line and space of $3{\mu}m$ pattern with a thickness of $40{\mu}m$ and $4{\mu}m$ pattern with a thickness of $130{\mu}m$ were obtained. Using the patterned PR as a plating mold, metallic structure was fabricated by electroplating. We have fabricated a electroplated nickel comb actuator using SU-8 as plating mold. The thickness of PR mold is $45{\mu}m$ and that of plated nickel is$40{\mu}m$. Minimum line of the mold is $5{\mu}m$. Patterned metallic layer or polymer layer, which has selectivity with the structural plated metallic layer, can be used as sacrificial layer for fabrication of free-standing structure.

  • PDF

Wafer-Level Fabrication of a Two-Axis Micromirror Driven by the Vertical Comb Drive (웨이퍼 레벨 공정이 가능한 2축 수직 콤 구동 방식 마이크로미러)

  • Kim, Min-Soo;Yoo, Byung-Wook;Jin, Joo-Young;Jeon, Jin-A;Park, Il-Heung;Park, Jae-Hyoung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.148-149
    • /
    • 2007
  • We present the design and fabrication prcoess of a two-axis tilting micromirror device driven by the electrostatic vertical comb actuator. A high aspect-ratio comb actuator is fabricated by multiple DRIE process in order to achieve large scan angle. The proposed fabrication process enables a mirror to be fabricated on the wafer-scale. By bonding a double-side polished (DSP) wafer and a silicon-on-insulator (SOI) wafer together, all actuators on the wafer are completely hidden under the reflectors. Nickel lines are embedded on a Pyrex wafer for the electrical access to numerous electrodes of mirrors. An anodic bonding step is implemented to contact electrical lines with ail electrodes on the wafer at a time. The mechanical angle of a fabricated mirror has been measured to be 1.9 degree and 1.6 degree, respectively, in the two orthogonal axes under driving voltages of 100 V. Also, a $8{\times}8$ array of micromirrors with high fill-factor of 70 % is fabricated by the same fabrication process.

  • PDF

Electrical and Optical Properties of F-Doped SnO2 Thin Film/Ag Nanowire Double Layers (F-Doped SnO2 Thin Film/Ag Nanowire 이중층의 전기적 및 광학적 특성)

  • Kim, Jong-Min;Koo, Bon-Ryul;Ahn, Hyo-Jin;Lee, Tae-Kun
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • Fluorine-doped $SnO_2$ (FTO) thin film/Ag nanowire (NW) double layers were fabricated by means of spin coating and ultrasonic spray pyrolysis. To investigate the optimum thickness of the FTO thin films when used as protection layer for Ag NWs, the deposition time of the ultrasonic spray pyrolysis process was varied at 0, 1, 3, 5, or 10 min. The structural, chemical, morphological, electrical, and optical properties of the double layers were examined using X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, the Hall effect measurement system, and UV-Vis spectrophotometry. Although pure Ag NWs formed isolated droplet-shaped Ag particles at an annealing temperature of $300^{\circ}C$, Ag NWs covered by FTO thin films maintained their high-aspect-ratio morphology. As the deposition time of the FTO thin films increased, the electrical and optical properties of the double layers degraded gradually. Therefore, the double layer fabricated with FTO thin films deposited for 1 min exhibited superb sheet resistance (${\sim}14.9{\Omega}/{\Box}$), high optical transmittance (~88.6 %), the best FOM (${\sim}19.9{\times}10^{-3}{\Omega}^{-1}$), and excellent thermal stability at an annealing temperature of $300^{\circ}C$ owing to the good morphology maintenance of the Ag NWs covered by FTO thin films.

Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites

  • Zaheer, Mohd Moonis;Jafri, Mohd Shamsuddin;Sharma, Ravi
    • Advances in concrete construction
    • /
    • v.8 no.3
    • /
    • pp.207-215
    • /
    • 2019
  • Application of nanotechnology can be used to tailor made cementitious composites owing to small dimension and physical behaviour of resulting hydration products. Because of high aspect ratio and extremely high strength, carbon nanotubes (CNTs) are perfect reinforcing materials. Hence, there is a great prospect to use CNTs in developing new generation cementitious materials. In the present paper, a parametric study has been conducted on cementitious composites reinforced by two types of multi walled carbon nanotubes (MWCNTs) designated as Type I CNT (10-20 nm outer dia.) and Type II CNT (30-50 nm outer dia.) with various concentrations ranging from 0.1% to 0.5% by weight of cement. To evaluate important properties such as flexural strength, strain to failure, elastic modulus and modulus of toughness of the CNT admixed specimens at different curing periods, flexural bending tests were performed. Results show that composites with Type II CNTs gave more strength as compared to Type I CNTs. The highest increase in strength (flexural and compressive) is of the order of 22% and 33%, respectively, compared to control samples. Modulus of toughness at 28 days showed highest improvement of 265% for Type II 0.3% CNT composites. It is obvious that an optimum percentage of CNT could exists for composites to achieve suitable reinforcement behaviour and desired strength properties. Based on the parametric study, a tentative optimum CNT concentration (0.3% by weight of cement) has been proposed. Scanning electron microscope image shows perfect crack bridging mechanism; several of the CNTs were shown to act as crack arrestors across fine cracks along with some CNTs breakage.

A study on the friction head loss in flat aluminum micro multi tubes with nonazeotropic refrigerant mixtures R-410A (비공비 혼합냉매 R-410A를 적용한 납작한 알루미늄 마이크로 멀티 튜브에서의 마찰손실에 관한 연구)

  • Lee, Jeong-Kun;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer friction loss headby using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat enhancement factor and pressure drop penalty factor. 1) The friction head loss showed an increase as the vapor quality and mass flux increased. In case of saturation temperature, it shows an increase as it gets lower. These factors are the reason occurring as the lower the saturation temperature is, the higher the density of refrigerant vapor gets. The influence of heat flux is similar as the dryness is low, but as it gets higher, it lowers in heat flux, and as the high temperature of high heat flux, it is a factor that occurs as the density gets lower. 2) RMS error of the in case of friction head loss, it showed to be predicted as 0.45~0.67 by Chisholm, Friedel, Lockhart and Martinelli. 3) As forfriction head loss penalty factor, the smaller the aspect ratio is, the larger the penalty factor gets, and as for the effect of micro-fin, the penalty factor increased because it decreases to the gas fluid the way groove for the refrigerant's flow.

Stress-strain Model of Laterally Confined High-strength Concrete with the Compressive Fracture Energy (압축파괴에너지를 도입한 횡구속 고강도 콘크리트의 응력-변형률 모델)

  • Hong, Ki-Nam;Shim, Won-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • In this paper, a stress-strain model for high-strength confined concrete is proposed using compressive fracture energy. In the compression test performed by author in Reference [6], an acrylic bar with strain gauges was embedded in the center of the specimen to measure the local strain distribution. It was found from the test that the local strain measurement by this acrylic rod is very effective. The local fracture zone length was defined based on the local strain distribution measured by the acrylic rod. Specifically, it was defined as the length where the local strain increases more than twice of the strain corresponding to maximum stress. In addition, the stress-strain relationship of confined concrete with compressive fracture energy is proposed on the assumption that the amount of energy absorbed by the compressive members subjected to the given lateral confining pressure is constant regardless of the aspect ratio and size. The proposed model predicts even results from other researchers accurately.

Preparation and Antibacterial Properties of the Planar-Type ZnO Powder Coated with Ag or CuO (Ag 또는 CuO를 코팅한 평판형 ZnO 분말의 합성 및 항균성 평가)

  • Hong, Da-Hee;Gwack, Ji-Yoo;Jeon, Deock-Seong;Jo, Dong-Hyeon;Lee, Gun-Sub;Lee, Jung-Hwan;Lee, Hee-Chul
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.144-151
    • /
    • 2021
  • In the present work, planar-type ZnO powder of [0001] plane with a high aspect ratio range of 20:1 to 50:1 was synthesized. Ag or CuO could be coated on the planar-type ZnO powder by wet methods such as centrifugation or ball milling. During the coating, the average size of the powder was slightly increased while maintaining the shape and XRD pattern of ZnO. When Ag or CuO was coated, the absolute value of the zeta potential, as well as the concentration of oxygen vacancy, was increased. Ag or CuO coated planar-type ZnO power exhibited excellent antibacterial performance, which seems to be related to their high electrostatic attraction force. They could be made into a masterbatch by mixing with ABS resin, and their applicability to antibacterial substances was confirmed by manufacturing the caps of a keyboard.