• Title/Summary/Keyword: High-aspect-ratio

Search Result 950, Processing Time 0.031 seconds

Pond Vegetation Assessment of Golf Courses in the Capital Region of Korea (수도권 지역 골프장의 연못식생 평가)

  • Kim Chang-Hwan;Ahn Deug-Soo
    • Journal of Environmental Science International
    • /
    • v.14 no.3
    • /
    • pp.279-288
    • /
    • 2005
  • The vascular plant at Korea CC was researched in 95 taxa and Korea CC had the highest number of vascular plants among the ponds of 9 golf courses in the capital region. The number of vascular plants at Eunhwasam CC was 21 taxa which followed as the second most. Most of the vascular plants surveyed consist of a mon-ocotyledon with 1-2 years of life and a dicotyledon as perennial. The ratio between an introduced species of pond vegetation and planting species from Jisan CC is $52.3\%$, which is the highest. The lowest ratio of those is $21.1\%$, which is from Pine Creek Cc. Pine Creek CC has 25 plant communities in total, with 16 semi-natural and natural communities and 9 planting or introduced communities. Pine Creek CC has the most varied plant communities among 9 golf clubs. There are plant communities of semi-natural and natural vegetation from all ponds, and there are 12 aquatic plant communities at disturbance or planting vegetation. We found out that Pine creek CC has more natural communities than disturbance or planting communities compared to other golf clubs, and there is not any natural vegetation at Pristine Valley CC. According to value grade from assessment indicator, the natural aspect of Seseoul CC and Eunhwasam CC are the lowest among 9 golf clubs. Taeyoung CC, Eunhwasam CC, Jisan CC, Seseoul CC are superior in made vegetation among the group in terms of euclidean similarity coefficient on natural aspect and are classified as one group. Korea CC and Pristine Valley CC have distinguished semi-natural vegetation and Midas Valley CC and Pine Creek CC, which have a relatively high natural aspect, are classified as one group. Blue Heron CC is separated from other groups into its own group because it has a high value of scenery in particular. In conclusion, there is a correlation between the natural aspect of a pond and size of vegetation.

PEMOCVD of Ti(C,N) Thin Films on D2 Steel and Si(100) Substrates at Low Growth Temperatures

  • Kim, Myung-Chan;Heo, Cheol-Ho;Boo, Jin-Hyo;Cho,Yong-Ki;Han, Jeon-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.211-211
    • /
    • 1999
  • Titanium nitride (TiN) thin films have useful properties including high hardness, good electrical conductivity, high melting point, and chemical inertness. The applications have included wear-resistant hard coatings on machine tools and bearings, decorative coating making use of the golden color, thermal control coatings for widows, and erosion resistant coatings for spacecraft plasma probes. For all these applications as feature sizes shrink and aspect ratios grow, the issue of good step coverage becomes increasingly important. It is therefore essential to manufacture conformal coatings of TiN. The growth of TiN thin films by chemical vapor deposition (CVD) is of great interest for achieving conformal deposition. The most widely used precursor for TiN is TiCl4 and NH3. However, chlorine impurity in the as-grown films and relatively high deposition temperature (>$600^{\circ}C$) are considered major drawbacks from actual device fabrication. To overcome these problems, recently, MOCVD processes including plasma assisted have been suggested. In this study, therefore, we have doposited Ti(C, N) thin films on Si(100) and D2 steel substrates in the temperature range of 150-30$0^{\circ}C$ using tetrakis diethylamido titanium (TDEAT) and titanium isopropoxide (TIP) by pulsed DC plamsa enhanced metal-organic chemical vapor deposition (PEMOCVD) method. Polycrystalline Ti(C, N) thin films were successfully grown on either D2 steel or Si(100) surfaces at temperature as low as 15$0^{\circ}C$. Compositions of the as-grown films were determined with XPS and RBS. From XPS analysis, thin films of Ti(C, N) with low oxygen concentration were obtained. RBS data were also confirmed the changes of stoichiometry and microhardness of our films. Radical formation and ionization behaviors in plasma are analyzed by optical emission spectroscopy (OES) at various pulsed bias and gases conditions. H2 and He+H2 gases are used as carrier gases to compare plasma parameter and the effect of N2 and NH3 gases as reactive gas is also evaluated in reduction of C content of the films. In this study, we fond that He and H2 mixture gas is very effective in enhancing ionization of radicals, especially N resulting is high hardness. The higher hardness of film is obtained to be ca. 1700 HK 0.01 but it depends on gas species and bias voltage. The proper process is evident for H and N2 gas atmosphere and bias voltage of 600V. However, NH3 gas highly reduces formation of CN radical, thereby decreasing C content of Ti(C, N) thin films in a great deal. Compared to PVD TiN films, the Ti(C, N) film grown by PEMOCVD has very good conformability; the step coverage exceeds 85% with an aspect ratio of more than 3.

  • PDF

Investigation of Ni/Cu Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용하기 위한 도금법으로 형성환 Ni/Cu 전극에 관한 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.250-253
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electroless plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. The Ni contact was formed on the front grid pattern by electroless plating followed by anneal ing at $380{\sim}400^{\circ}C$ for $15{\sim}30$ min at $N_{2}$ gas to allow formation of a nickel-silicide in a tube furnace or a rapid thermal processing(RTP) chamber because nickel is transformed to NiSi at $380{\sim}400^{\circ}C$. The Ni plating solution is composed of a mixture of $NiCl_{2}$ as a main nickel source. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. The Ni/Cu contact was found to be well suited for high-efficiency solar cells and was successfully formed by using electroless plating and electroplating, which are more cost effective than vacuum evaporation. In this paper, we investigated low-cost Ni/Cu contact formation by electroless and electroplating for crystalline silicon solar cells.

  • PDF

A Study on Developing the Draft of International Standard for the Determination of Perchlorate in Soil Using Ion Chromatography (이온크로마토그래피를 이용한 토양 중 퍼클로레이트 정량에 관한 국제표준(안) 연구)

  • Choi, Cheon-il;Lee, Goon-taek;Park, Min-ki;Jeong, Moon-ju;Kim, Ji-yang;Kang, Ji-young;Ryu, Ji-young
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.6
    • /
    • pp.55-61
    • /
    • 2015
  • Based on the literature study for the determination of perchlorate in soil we chose the ion chromatography as a measurement method and decided to use 70 mM KOH as an eluent to avoid the interference derived from the co-elution of pyrophosphate (P2O74−), tripolyphosphate (P3O105−). Also we proposed to use air dried soil through 0.15 mm sieve and distilled water as an extractant. Under the these basic concepts, we carried out the experiments to set up the detail procedure like solid to liquid ratio (S/L ratio), extraction time, device for extraction and indicating factors for quality control (e.g. precision, accuracy, MDL, LOQ). In case of time and device for extraction, 5 hours of mechanical shaking or 1 hour of centrifugation showed better precision and accuracy than that of sonication for 1 hour According to these results, we proposed the extraction method combining 5 hours of mechanical shaking with 1 hour of centrifugation. From the aspect of S/L ratio, the ratio of 1/2 or 1/3 showed resonable precision and accuracy. In case of the ratio of 1/2, there would be some problems in the separation process when the proportion of fine particle is high. Therefore, we proposed the extraction ratio of solid to liquid as 1/3 instead of 1/2. With the consideration of cost effectiveness and soil salinity, we proposed the use of cartridge for removing the interfering anions like chloride, sulfate and carbonate in specific sample such as saline soil.

Feasibility of Tax Increase in Korean Welfare State via Estimation of Optimal Tax burden Ratio (적정조세부담률 추정을 통한 한국 복지국가 증세가능성에 관한 연구)

  • Kim, SeongWook
    • 한국사회정책
    • /
    • v.20 no.3
    • /
    • pp.77-115
    • /
    • 2013
  • The purpose of this study is to present empirical evidence for discussion of financing social welfare via estimating optimal tax burden in the main member countries of the OECD by using Hausman-Taylor method considering endogeneity of explanatory variables. Also, the author produced an international tax comparison index reflecting theoretical hypotheses on revenue-expenditure nexus within a model to compare real tax burden by countries and to examine feasibility of tax increase in Korea. As a result of the analysis, the higher the level of tax burden was, the higher the level of welfare expenditure was, indicating the connection between high burden and high welfare from the aspect of scale. The results also indicated that the subject countries recently entered into the state of low tax burden. Meanwhile, Korea had maintained low burden until the late 1990s but the tax burden soared up since the financial crisis related to the IMF. However, due to the impact of foreign economy and the tax reduction policy, it reentered into the low-burden state after 2009. On the other hand, the degree of social welfare expenditure's reducing tax burden has been gradually enhanced since the crisis. In this context, the current optimal tax burden ratio of Korea as of 2010 may be 25.8%~26.5% of GDP based on input of welfare expenditure variables, a percent that Korea was investigated to be a 'high tax burden-low ITC' country whose tax increase of 0.7~1.4%p may be feasible and that the success of tax system reform for tax increase might be higher probability when compare to others. However, measures of increasing social security contributions and consumption tax were analyzed to be improper from the aspect of managing finance when compared to increase in other tax items, considering the relatively higher ITC. Tax increase is not necessarily required though there may be room for tax increase; the optimal tax burden ratio can be understood as the level that may be achieved on average when compared to other nations, not as the "proper" level. Thus, discussion of tax increase should be accompanied with comprehensive understanding of models of economic developmental difference from nations and institutional & historical attributes included in specific tax mix.

Improvement of Electrical Properties by Controlling Nickel Plating Temperatures for All Solid Alumina Capacitors

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • Recently, thin film capacitors used for vehicle inverters are small size, high capacitance, fast response, and large capacitance. But its applications were made up of liquid as electrolyte, so its capacitors are limited to low operating temperature range and the polarity. This research proposes using Ni-P alloys by electroless plating as the electrode instead of liquid electrode. Our substrate has a high aspect ratio and complicated shape because of anodic aluminum oxide (AAO). We used AAO because film thickness and effective surface area are depended on for high capacitance. As the metal electrode instead of electrolyte is injected into AAO, the film capacitor has advantages high voltage, wide operating temperature, and excellent frequency property. However, thin film capacitor made by electroless-plated Ni on AAO for full-filling into etched tunnel was limited from optimizing the deposition process so as to prevent open-through pore structures at the electroless plating owing to complicated morphological structure. In this paper, the electroless plating parameters are controlled by temperature in electroless Ni plating for reducing reaction rate. The Electrical properties with I-V and capacitance density were measured. By using nickel electrode, the capacitance density for the etched and Ni electroless plated films was 100 nFcm-2 while that for a film without any etch tunnel was 12.5 nFcm-2. Breakdown voltage and leakage current are improved, as the properties of metal deposition by electroless plating. The synthesized final nanostructures were characterized by scanning electron microscopy (SEM).

  • PDF

The Characteristics of the Output Voltage Ferroelectrics for High Voltages Pulse Generators (고전압 펄스 발생기를 위한 강유전체의 전압 출력 특성)

  • Jang, Dong-Gwan;Choi, Sun-Ho;Hwang, Sunl-Mook;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1408-1412
    • /
    • 2013
  • High power pulse generating technology is to accumulate the energy for relatively long and then to create a strong force by emitting the energy very fast. High power pulse generating technology has recently been using in various fields like environments, industry, research, military and so on. Numerous studies about high power pulse generators have already been performed and commercialized in various conditions. However, in aspect of their size and weight, it is hard to carry the generators which currently have been developed. For these reasons, din nations like America or Russia, the researches have been performed for Ferroelectric Generators(FEG), which have relatively simple structure and are economical. To realize the ferroelectric generator, in this study, we selected the PZTs which have different physical properties respectively, and then shocked them using explosives. The PZT samples with volumes of $0.31{\sim}0.94cm^3$ were depolarized by shocked and produced the waveform that have peak voltages of 4.28 ~ 15kV. The lowest relative permittivity sample generated much higher peak voltage. And sudden voltage drops which seem to be caused by dielectric breakdown were observed in some experiments using low young's modulus samples. Also, increase in thickness led to increase in peak voltage, but the ratio of the voltage rise did not reach the ration of the thickness increase.

Prediction of Failure for a Motor Stator by Monitoring Magnetic Flux Spectrum in High Frequency Region (고주파 영역 자속 스펙트럼 감시에 의한 전동기 고정자 고장예측)

  • Kim, Dae-Young;Yeo, Yeong-Koo;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.8 no.3
    • /
    • pp.49-54
    • /
    • 2012
  • In this study, the way how we can find the defects of motor windings in advance will be discussed. The magnetic flux spectrum in the high frequency region of the large motor was analyzed based on the actual fault practices related with motor windings. In case of defective motor relative amplitude ratio of the stator slot frequency to its sideband was very high compared to that of healthy motor. And the defective signal related with motor windings was indicated in advance in the magnetic flux spectrum prior to over 1 month before failure. Considering this aspect it can be estimated that magnetic flux spectrum in the high frequency region has the excellent predictive diagnostic capability.

  • PDF

Investigation of Plated Contact for Crystalline Silicon Solar Cells (결정질 실리콘 태양전지에 적용될 도금전극 특성 연구)

  • Kim, Bum-Ho;Choi, Jun-Young;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.192-193
    • /
    • 2007
  • An evaporated Ti/Pd/Ag contact system is most widely used to make high-efficiency silicon solar cells, however, the system is not cost effective due to expensive materials and vacuum techniques. Commercial solar cells with screen-printed contacts formed by using Ag paste suffer from a low fill factor and a high shading loss because of high contact resistance and low aspect ratio. Low-cost Ni and Cu metal contacts have been formed by using electro less plating and electroplating techniques to replace the Ti/Pd/Ag and screen-printed Ag contacts. Ni/Cu alloy is plated on a silicon substrate by electro-deposition of the alloy from an acetate electrolyte solution, and nickel-silicide formation at the interface between the silicon and the nickel enhances stability and reduces the contact resistance. It was, therefore, found that nickel-silicide was suitable for high-efficiency solar cell applications. Cu was electroplated on the Ni layer by using a light induced plating method. The Cu electroplating solution was made up of a commercially available acid sulfate bath and additives to reduce the stress of the copper layer. In this paper, we investigated low-cost Ni/Cu contact formation by electro less and electroplating for crystalline silicon solar cells.

  • PDF

Correlation Analysis between Forest Community and Environment Factor of Nari Basin in Ulleung Island (울릉도 나리분지의 산림군락과 환경요인과의 상관관계)

  • Chung, Jae-Min;Yoon, Jun-Hyuck;Shin, Jae-Kwon;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.45 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • This study was carried out to provide the basic information for effective preservation and management of forest community of Nari basin in Ulleung Island. Forest community in Nari basin was classified into Fagus engleriana community, Sorbus amurensis community, Pinus densiflora community, Celtis jessoensis community and Alnus maximowiczii community. As the result of DCCA ordination analysis, sea level among environmental factors had high correlation with community distribution. Fagus engleriana community and Sorbus amurensis community correlated highly with aspect, Na content, and C/N ratio. There was a high correlation between Celtis jessoensis community and the content of Ca and K. Alnus maximowiczii community was distributed in site where CEC content is high. Pinus densiflora community was distributed in site where the content of Ca and CEC is high.