• Title/Summary/Keyword: High-aspect-ratio

Search Result 950, Processing Time 0.032 seconds

Wind direction field under the influence of topography, part I: A descriptive model

  • Weerasuriya, A.U.;Hu, Z.Z.;Li, S.W.;Tse, K.T.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.455-476
    • /
    • 2016
  • In both structural and environmental wind engineering, the vertical variation of wind direction is important as it impacts both the torsional response of the high-rise building and the pedestrian level wind environment. In order to systematically investigate the vertical variation of wind directions (i.e., the so-called 'twist effect') induced by hills with idealized geometries, a series of wind-tunnel tests was conducted. The length-to-width aspect ratios of the hill models were 1/3, 1/2, 1, 2 and 3, and the measurements of both wind speeds and directions were taken on a three-dimensional grid system. From the wind-tunnel tests, it has been found that the direction changes and most prominent at the half height of the hill. On the other hand, the characteristic length of the direction change, has been found to increase when moving from the windward zone into the wake. Based on the wind-tunnel measurements, a descriptive model is proposed to calculate both the horizontal and vertical variations of wind directions. Preliminarily validated against the wind-tunnel measurements, the proposed model has been found to be acceptable to describe the direction changes induced by an idealized hill with an aspect ratio close to 1. For the hills with aspect ratios less than 1, while the description of the vertical variation is still valid, the horizontal description proposed by the model has been found unfit.

Impact of Filler Aspect Ratio on Oxygen Transmission and Thermal Conductivity using Hexagonal Boron Nitride-Polymer Composites (필러 네트워크 형성 및 배향이 복합소재 열전도도와 산소투과도에 미치는 영향 고찰)

  • Shin, Haeun;Kim, Chae Bin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.63-69
    • /
    • 2021
  • In order to develop an integrated heat dissipating material and gas barrier film for electronics, new polymer was designed and synthesized for preparing composites containing hexagonal boron nitride (hBN) filler. Depending on the size and content of the hBN filler, both thermal conductivity and oxygen transmission rate can be adjusted. The composite achieved a high thermal conductivity of 28.0 W·m-1·K-1 at most and the oxygen transmission rate was decreased by 62% compared to that of the filler free matrix. Effective filler aspect ratios could be estimated by comparing thermal conductivity and oxygen transmission rate with values predicted by theoretical models. Discrepancy on the aspect ratios extracted from thermal conductivity and oxygen transmission rate comparisons was also discussed.

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  • Bosnar, Danijel;Kozmar, Hrvoje;Pospisil, Stanislav;Machacek, Michael
    • Wind and Structures
    • /
    • v.32 no.5
    • /
    • pp.471-485
    • /
    • 2021
  • Onshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e. rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.

A Study on the Buckling Strength of Perforated Plates for 60M Twin-hull Car-ferry (60M급 쌍동형 카페리 구조의 유공판 좌굴강도 연구)

  • Seo, Kwang-Cheol;Oh, Jungmo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.1
    • /
    • pp.126-132
    • /
    • 2018
  • This paper discusses about results of advanced buckling strength design for several kinds of perforated plated in the twin-hull car-ferry. For medium / small sized high speed vessels with a length of more than 50 meters and a length / width ratio of more than 12, such as car-ferries, it is highly possible that the buckling strength becomes weak due to the relatively thin thickness and the use of low strength capacity such as mild steel. Especially, it becomes big problem about weak buckling rigidity around the opening to access purpose in the perforated. As regarding safety design point of view for perforated plate, it is necessary to clarify buckling strength and ultimate strength by the distribution of in-plane load distribution around the opening. In this study, nonlinear series analysis using ANSYS was performed to clarify the influence of parameters such as aspect ratio, opening ratio and opening shape affecting the buckling and ultimate strength characteristics of the perforated plate under axial compression and we are derived the optimum design as buckling strength point of view. Based on these results, the governing factor determining the buckling strength of the perforated plate was the opening ratio, and the aspect ratio and the shape of the hole were not influenced.

Micro End-Mill Machining Characters and its Applications (마이크로 앤드밀의 가공특성분석 및 응용가공 연구)

  • Jae, Tae-Jin;Lee, Eung-Sook;Choi, Doo-Sun;Hong, Sung-Min;Lee, Jong-Chan;Choi, Hwan
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.589-592
    • /
    • 2003
  • In the machining process of micros shape by using high-precision machining system and micro end-mill, it is important for machining characters of tools to be grasped in order to stably use tools of micro end-mill. In this study. we carried out an analytical experiment of basic machining features by using end-mill tools for the purpose of damage prevention and manufacture of high quality when the tools of micro end-mill are used. This experiment used a micro machining system with high precision and a variety of end-mill tools commercialized from tens to hundreds microns in diameter. To establish an optimal machining condition without tool damage, cutting force was analyzed according to the changes of tool diameter and cutting conditions such as cutting speed. feed rate, depth of cut. And an examination was performed for the shape and surface illumination of machining surface according to the changes of machining conditions. Based on these micro machining conditions, micro square pillar, cylinder shaft. thin wall with high aspect ratio, and micro 3-D structures such as micro gear and fan were manufactured.

  • PDF

A Study on Aircraft Structure and Jet Engine Part1 : Analysis of Heat Conduction on the Turbine Disk for Jet Engine (항공기 구조 및 제트 엔진에 관한 연구 제 1 절 : 제트엔진용 터어빈디스크의 열전도 해석)

  • Gil Moon Park;Hwan Kyu Park;Jong Il Kim;Jin Heung Kim;Moo Seok Lee;Nak Kyu Chung
    • Journal of Astronomy and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.153-174
    • /
    • 1985
  • The one of critical factor in gas turbine engine performance is high turbine inlet gas temperature. Therefore, the turbine rotor has so many problems which must be considered such as the turbine blade cooling, thermal stress of turbine disk due to severe temperature gradient, turbine rotor tip clearance, under the high operating temperature. The purpose of this study is to provider the temperature distribution and heat flux in turbine disk which is required to considered premensioned problem by the Finite Difference Method and the Finite Element Methods on the steady state condition. In this study, the optimum aspect ratio of turbine disk was analysed for various heat conductivity of turbine disk material by Finite Difference Method, and the effect of laminating method with high conductivity materials to disk thickness direction by Finite Element Methods in order to cool the disk. The laminating method with high conductivity material on the side of the disk is effective.

  • PDF

Numerical Study on Flow Field around High Speed Hydrofoil with Shallow Submergence (몰수심도가 작은 고속 수중익 주위의 유동장에 대한 수치계산)

  • Lee, Jeong-Moo;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.8-13
    • /
    • 2004
  • In order to better understand the characteristics of the flow field around the submerged hydrofoil of finite span with high speed and shallow submergence. a numerical code which can solve the flow around a fast lifting body under the free surface was developed and used to obtain various interesting features of the flow. The code was based on the panel method of Hess( 1972), and the free surface condition was linearized to conform with the assumption of the high Froude number. It is shown that the effect of the change of submerged depth. angle of attack and aspect ratio upon the sectional lift coefficient is rather significant for the case of the chosen example wing, which has the rectangular planform. Since Lee(2002)'s theoretical results were for the wing of elliptical planform, the direct comparison of the two results was not possible. It seems that more computational results are in need to compare the theoretical and the numerical prediction in detail.

A Study on the Improvement of Workability of High Strength Steed Fiber Reinforced Cementitious Composites (고강도 강섬유 보강 시멘트 복합체의 워커빌리티 향상에 관한 연구)

  • Koh, Kyung-Taeg;Kang, Su-Tae;Park, Jung-Jun;Ryu, Gum-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.141-148
    • /
    • 2004
  • This paper present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the workability of high strength steel fiber reinforced cementitious composites. As for the test results, it was found that the workability of high strength steel fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of steel fiber improved the workability of fiber reinforced cementitious composites. And the steel fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

Effect of shear stresses on the deflection and optimal configuration of a rectangular FGM structure

  • Ayoub El Amrani;Hafid Mataich;Jaouad El-Mekkaoui;Bouchta El Amrani
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.391-407
    • /
    • 2023
  • This paper presents a static study of a rectangular functional graded material (FGM) plate, simply supported on its four edges, adopting a refined higher order theory that looks for, only,four unknowns,without taking into account any corrective factor of the deformation energy with the satisfaction of the zero shear stress conditions on the upper and lower faces of the plate. We will have determined the contribution of these stresses in the transverse deflection of the plate, as well as their effects on the axial stress within the interfaces between the layers(to avoid any problem of imperfections such as delamination) and on the top and bottom edges of the plate in order to take into account the fatigue phenomenon when choosing the distribution law of the properties used during the design of the plate. A numerical statement, in percentage, of the contribution of the shear effect is made in order to show the reliability of the adopted theory. We will also have demonstrated the need to add the shear effect when the aspect ratio is small or large. Code routines are programmed to obtain numerical results illustrating the validity of the model proposed in the theory compared to those available in the literature.

Effect of MgSO4/MgO on the Synthesis of 5Mg(OH)2·MgSO4·3H2O Whiskers using One-step Ambient Pressure (상압 공정을 이용한 침상형 5Mg(OH)2·MgSO4·3H2O 합성에 대한 MgSO4/MgO 효과)

  • Yu, Ri;Pee, Jae-Hwan;Kim, Hyung Tae;Kim, YooJin
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2013
  • Magnesium hydroxide sulfate hydrate ($5Mg(OH)_2.MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH) whiskers were synthesized using MgO and $MgSO_4.7H_2O$ as reactants without addition of basic solution. Previously, MHSH whiskers were prepared by hydrothermal method using $MgSO_4$ in aqueous ammonia. In this work, for the first time, we synthesized a high purity MHSH via ambient pressure. In addition, a high molar ratio of $MgSO_4$ : MgO is an important key to the formation of high purity MHSH. Also, it was possible to prepare whiskers with high aspect ratio using an increasing reaction time in the reaction between the remaining $SO_4^{2-}$ ions and the ${Mg(OH)_6}^{4-}$ fragment, finally producing one-dimensional whiskers.