• Title/Summary/Keyword: High-aspect-ratio

Search Result 950, Processing Time 0.034 seconds

The Synthesis of Copper Nanowire with high aspect ratio by capping agent for textile electronics

  • Byun, Woonghee;Kim, Minho;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.379.1-379.1
    • /
    • 2016
  • Recently, new types of wearable devices such as textile electronics are considered as the next generation wearable electronics. To realize the textile electronics, conductive fibers are required to supply the power and for signal processing. Conventionally, silver nanowires (Ag NWs) have been attracted as one of the conductive additives in the fibers, however, using the Ag NWs may lead to high production cost since it is a noble metal. Many researches have been done to replace the Ag NWs into a cheaper materials such as copper nanowires (Cu NWs). Here, we synthesized ultra-long Cu NWs for a conductive filler material in conductive fibers, taking advantages of their structural features. To investigate the effect of capping agents on the aspect ratio of the synthesized Cu NWs, we used various capping agents such as hexadecylamine, butylamine, ethylenedilamine and oleylamine in the Cu NW synthesis. In this research, the effects of capping agents on the structure and the synthesis of Cu NWs are presented.

  • PDF

Fabrication of 3-Dimensional Microstructures using Digital Micromirror Device (Digital Micromirror Device 를 이용한 3차원 마이크로구조물 제작)

  • Choi, Jae-Won;Ha, Young-Myoung;Choi, Kyung-Hyun;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.116-125
    • /
    • 2006
  • MEMS and LIGA technologies have been used for fabricating microstructures, but their shape is not 3D because of difficulty for preparation of many masks. To fabricate 3D microstructures, microstereolithography technology based on Digital Micromirror Device($DMD^{TM}$) was introduced. It has no need of masks and is capable of fabricating high aspect ratio microstructures. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D parts are fabricated by layer-by-layer according to 2D section sliced from STL file. The UV light source is illuminated to DMD which makes bitmap images of 2D section, and they are transferred and focused on resin surface. In this paper, we addressed optical design of microstereolithography system in consideration of light path according to DMD operation and image-forming on the resin surface using optical design program. To verify the performance of implemented microstereolithography system, 3D microstructures with complexity and high aspect ratio were fabricated.

Comparison of Welding Characteristics of Austenitic 304 Stainless Steel and SM45C Using a Continuous Wave Nd:YAG Laser (오스테나이트계 스테인리스강과 SM45C의 연속파형 Nd:YAG 레이저 용접특성비교)

  • 유영태;오용석;노경보;임기건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless and SM45C using a continuous wave Nd:YAG laser n experimentally investigated Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much Inter than those involved in conventional welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar and plates, etc. The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration. This paper describes the weld ability of SM45C carbon steel for machine structural use by Nd:YAG laser. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

Fabrication of Micro Structure Using Photo Polymer Mask and Micro Abrasive Jet Machining (Photo Polymer 마스크와 미세입자분사가공을 이용한 미세구조물 제작)

  • Ko T.J.;Park D.J.;Lee I.H.;Kim H.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1175-1178
    • /
    • 2005
  • Brittle materials, especially single-crystal silicon wafer, are widely used for sensors, IC industry, and MEMS applications. e general machining process of crack easy materials is by chemical agents, but it is hazardous and time consuming. Also, it is difficult to get high aspect ratio micro structure. As an alternative tool, an AJM(Abrasive jet machining) is promising method in terms of high aspect ratio and production cost. In this study, to get more precise detail compared to general AJM, photo polymer mask, SU-8, used in photolithography was applied in AJM. Process parameters such as abrasive diameter, air pressure, nozzle diameter, flow rate of abrasive in AJM and a variety of conditions in spin coating were decided. Finally, micro channel and mixer was fabricated to see the efficiency of the AJM with photo polymer mask.

  • PDF

Machining of The Micro Nozzle Using Focused Ion Beam (집속이온빔을 이용한 마이크로 노즐의 제작)

  • Kim G.H.;Min B.K.;Lee S.J.;Park C.W.;Lee J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1194-1197
    • /
    • 2005
  • Micro nozzle is employed as a dynamic passive valve in micro fluidic devices. Micro nozzle array is used in micro droplet generation in bio-medical applications and propulsion device for actuating satellite and aerospace ship in vacuum environments. Aperture angle and the channel length of the micro nozzle affect its retification efficiency, and thus it is needed to produce micro nozzle precisely. MEMS process has a limit on making a micro nozzle with high-aspect ratio. Reactive ion etching process can make high-aspect ratio structure, but it is difficult to make the complex shape. Focused ion beam deposition has advantage in machining of three-dimensional complex structures of sub-micron size. Moreover, it is possible to monitor machining process and to correct defected part at simultaneously. In this study, focused ion beam deposition was applied to micro nozzle production.

  • PDF

Fabrication of a shadow mask for OTFT circuit (유기 박막 트랜지스터 회로를 위한 섀도 마스크의 제작)

  • Yi S.M.;Park M.S.;Lee Y.S.;Lee H.S.;Chu C.N.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1277-1280
    • /
    • 2005
  • A high-aspect-ratio and high-resolution stainless steel shadow mask for organic thin-film transistors (OTFTs) circuit has been fabricated by a new method which combines photochemical machining, micro-electrical discharge machining (micro-EDM), and electrochemical etching (ECE). First, connection lines and source-drain holes are roughly machined by photochemical etching, and then the part of source and drain holes is finished by the combination of micro-EDM and ECE processes. Using this method a $100\;\mu{m}$ thick stainless steel (AISI 304) shadow mask for inverter can be fabricated with the channel length of $30\;\mu{m}\;and\;10\;\mu{m}\;respectively.\;The\;width\;of\;connection line\;is\;150\;\mu{m}$. The aspect ratio of the wall is about 5 and 15, respectively. Metal lines and source-drain electrodes of OTFTs were successfully deposited through the fabricated shadow mask.

  • PDF

Flight Loads Analysis of Aircraft with High Aspect Ratio Flexible Wing by Using MSC/NASTRAN (MSC/NASTRAN을 활용한 고세장비 유연날개 항공기의 비행하중 해석)

  • Jang, Seyong;Kim, Sangyong;Kim, Youngyup;Cho, Changmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.657-664
    • /
    • 2013
  • The flight loads analysis was carried out on the aircraft with high aspect ratio flexible wings by using commercial software MSC/NASTRAN. The aerodynamic model for flight loads analysis was corrected, compared with results of the wind tunnel test. And in-house program was developed for pre and post works. In-house program enabling management of much data automatically consists of three modules: 'Construction of the mass distributed model', 'Selection of critical load cases', 'Generation of external loads for structural design'. By utilizing these techniques and programs, the procedure of flight loads analysis was established for effective development of an aircraft.

Micro End-milling Technology for Micro Pole Structures (미세 폴 구조물 가공을 위한 마이크로 앤드밀링 기술)

  • Je, Tae-Jin;Choi, Doo-Sun;Lee, Eung-Sug;Hong, Sung-Min;Lee, Jong-Chan;Choi, Han
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.7-13
    • /
    • 2005
  • In the case of fabricating micro pole structures such as column, square-pole and gear shaft by the micro end-milling process, it can be useful in the fields of industry, for example, micro parts, electrode for electrical discharge machining and micro mold for injection molding. In this study, machining factors and the process were analyzed. Machining experiments of various micro pole configurations were performed. Analysis of the change and effect of the cutting force according to the machining conditions was carried out. An analytical study of the deformation of the micro pole caused cutting conditions and cutting force through the finite element method and ANSYS program was carried out. As a result, this research presented a method of fabricating the column pole of below $100{\mu}m$ diameter with high aspect ratio by using micro end-milling process, and based on that, a method of fabricating a variety of applicable structures. Also the minimum size of the pole capable of fabricating through theory and experiment were demonstrated.

  • PDF

Injection Molding of Hydrophobic Plastic Plates (사출 성형에 의한 소수성 플라스틱 기판 제작)

  • Yoo, Y.E.;Lee, K.H.;Yoon, J.S.;Choi, D.S.;Kim, S.K.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1563-1565
    • /
    • 2008
  • Hydrophobic plastic plates employing nano surface features are injection molded using thermoplastic materials. A variotherm molding process is devised for filling the nano pores and releasing the molded nano features from the master. The size of the molded nano surface features are about 100nm in diameter and 200nm in height. The size of the molded plate is about 30mm x 30mm and the thickness is 1mm. As molding materials, Polypropylene, PMMA, COC and PC are employed, which are all typical commodity thermoplastic materials. The mold temperature(stamper temperature) is investigated as a major processing parameter for molding high aspect ratio nano surface features. Almost fully molded nano features are fabricated above a certain level of mold temperature depends on the employing material. The contact angles on the injection molded plates are measured to estimate the hydrophobicity and found to have higher contact angle up to 180% compared to the blank plate with no surface features.

  • PDF

Etching of Silicon Wafer Using Focused Argon lon Laser Beam (집속 아르곤 이온 레이저 빔을 이용한 실리콘 기판의 식각)

  • Cheong, Jae-Hoon;Lee, Cheon;Park, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.4
    • /
    • pp.261-268
    • /
    • 1999
  • Laser-induced thermochemical etching has been recognized as a new powerful method for processing a variety of materials, including metals, semiconductors, ceramics, insulators and polymers. This study presents characteristics of direct etching for Si substrate using focused argon ion laser beam in aqueous KOH and $CCl_2F_2$ gas. In order to determine process conditions, we first theoretically investigated the temperature characteristics induced by a CW laser beam with a gaussian intensity distribution on a silicon surface. Major process parameters are laser beam power, beam scan speed and reaction material. We have achieved a very high etch rate up to $434.7\mum/sec$ and a high aspect ratio of about 6. Potential applications of this laser beam etching include prototyping of micro-structures of MEMS(micro electro mechanical systems), repair of devices, and isolation of opto-electric devices.

  • PDF