• Title/Summary/Keyword: High-altitude ElectroMagnetic Pulse(HEMP)

Search Result 8, Processing Time 0.018 seconds

Implementation of Dedicated Power Line Filter for HEMP Protection (HEMP 보호용 전원선 필터 구현)

  • Kim, Keun-Nam;Lee, Sung-Hwa;Kim, Jin-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.47-52
    • /
    • 2016
  • This paper covers the importance of a dedicated Power Line Filter implementation against HEMP(High altitude ElectroMagnetic Pulse) threats caused by high altitude nuclear detonations. As the PCI test results for E1 short pulse with 2500[A], only HEMP filter obtained the required residual current around 8[A], but others didn't meet below 10[A] on MIL-STD-188-125 PCI regulation. Consequently, the development of a dedicated power line filter turned out to be a essential element in order to protect the power related system against HEMP transient.

A Development of the Optimized Shielding Room Design Simulator for HEMP Protection (HEMP 방호용 차폐실 최적설계를 위한 시뮬레이터 개발)

  • Min, Gyung-Chan;Kim, Dong-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.4
    • /
    • pp.121-126
    • /
    • 2010
  • Regarding HEMP has been studied as few thousand of paper by major nuclear bomb holding countries with USA for the self protection against nuclear bomb attract. Major HEMP protection facilities are consist of the shielding, filtering, grounding and high voltage protection circuits. Shielding room construction required a highest cost among the key protective facilities. Most of a theoretical formulas listed on the paper and related books has a little correlations in the certain frequency band between the theoretical formulas and field measuring results. For the reasons we proposed the advanced new theoretical formulas and developed the computer simulation S/W as enough as apply to the cost effective shielding room design for HEMP considering the various structural constants.

A Study on the Measurement Method of Test Waveform for System-level HEMP Immunity Test (체계 수준 HEMP 내성 시험을 위한 시험파형 계측 기법 연구)

  • Yeo, Saedong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.233-240
    • /
    • 2019
  • High-altitude ElectroMagnetic Pulse(HEMP) is a high-power electromagnetic pulse caused by nuclear explosions at altitudes above 30 km. This pulse can cause serious damage to the electrical/electronic device. Therefore, there are a lot of studies on the effects of HEMP in the literature. When conducting studies on the effects of HEMP, it is essential to measure the simulated HEMP. Depending on the need for measurement, this paper focuses on the HEMP measurement method. This paper proposes a measurement method using frequency domain compensation to extract the correct waveform and solves the offset problem more efficiently than the conventional methods. The proposed method is verified by experiment using HEMP simulator and measurement system in ADD.

Estimation of the Penetrated Pulse using Measured Shielding Effectiveness (측정된 전자파 차폐율을 이용한 시스템 내부 침투파형 예측)

  • Kang, Rae-Choong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1121-1128
    • /
    • 2011
  • The HEMP has very short rising time with several tens of kV/m, and very dangerous to almost of the electronics. And the certain level of EMP shielding effectiveness is necessary for mos t of the systems andequipment. In EMP shielding effectiveness, the peak value and the rising time in the system are the most considerable parameters. In order to find out these parameters, we need to estimate the pulse shape in time domain. In this paper, we propose the methods to estimate the penetrated pulse in time domain using measured shielding effectiveness and digital filter modeling technique. The validity of the Digital filter modeling technique is verified by the HFSS.

Analysis of Characteristics of the HEMP Coupling Signal for a Line Over Ground (접지면 위 도선에 대한 고고도 전자기 펄스 신호의 결합 특성 분석)

  • Lee, Jin-Ho;Kwon, Joon-Hyuck;Shin, Guy-Beom;Kang, Rae-Choong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1172-1179
    • /
    • 2010
  • Since HEMP has the very short rising time and propagates widespreadly with several tens of kV/m, it threatens most of systems in its cover range. Therefore, it is important to research coupling mechanism into systems and establish countermeasures for the HEMP to protect systems effectively. This paper analyzed characteristics and trends of currents to be induced at the load of a line which is located over ground with different conditions such as polarization, incidence angle, line length and height etc. We applied double exponential waveform as the HEMP shape and used BLT method to analyze the coupling route into the line. Also, we compared the simulation data of chain matrix modeling to verify reliability of BLT modeling. In the result, two data is almost agreed.

An Experimental Study on the Development of Electromagnetic Shielding Concrete Wall for Shielding High-altitude Electromagnetic Pulse (HEMP) (고고도 전자기파(HEMP)차폐를 위한 전자파 차폐 콘크리트 벽체 개발에 관한 실험적 연구)

  • Choi, Hyun-Jun;Kim, Hyung-Chul;Lim, Sang-Woo;Lee, Han-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.2
    • /
    • pp.169-177
    • /
    • 2017
  • Rather than causing damage from heat, blast, and radiation of a regular nuclear weapon, recently, it is predicted that North Korea has been inventing high altitude electromagnetic pulse (HEMP) missile in order to incapacitate electronic equipment. HEMP shielding facility is used for military purpose today. Despite the electromagnetic shielding effects from high quality compression plates, problems may include such as the possibility of electromagnetic influx resulting in the welding of the compression plates, and difficulties and high cost of construction. Therefore, in this study, a high electrical conducting material was added to the concrete experimental subject to ensure the shielding effect through electromagnetic waves to for the concrete structure, instead of building a shielding facility separately for the structure. Also, among the experimental subjects, 100 ${\mu}m$ of Iron-Aluminum alloy metal spraying coat was applied to two types with the highest shielding effect, and to two types with the lowest shielding effect. The result of the experiment indicates that experimental subjects added with a high electrical conductivity material did not meet the minimum shielding criteria of MIL-STD-118-125-1 standard, but all the experimental material applied to the metal spraying coating satisfied the minimum shielding criteria. In conclusion, it is considered that 100 µm of Iron-Aluminum alloy metal spraying coat contains high efficiency in the HEMP shielding.

Development of the HEMP Generation, Propagation Analysis, and Optimal Shelter Design Tool (고 고도 전자기파(HEMP) 발생과 전파해석 및 방호실 최적 설계 Tool 개발)

  • Kim, Dong Il;Min, Gyeong Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2331-2338
    • /
    • 2014
  • The HEMP threat may have acquired new, and urgent, relevance as the proliferation of nuclear weapons and missile technology accelerates of the North Korea, for example, is assessed as already having developed few atomic weapons, and is on the verge of North Korea already has missiles capable of delivering a nuclear warhead against South Korea. ITU K.78, K81 and IEC recommended its counter-measuring for the industrial facilities with navigation and sailing facilities in order to obviate the all of processor equipped system malfunctions from the EMP/HEMP but its simulation must only be done by the computer simulation which had studied on the 1960-1990 years USA/AFWL papers. This result has a significant activities to the South Korea being under the North Korea threat because all of HEMP related products was strongly limited for export. The HEMP cord which was developed newly by the KTI including the HEMP generation & propagation analysis, optimal shelter design tool, essential EM energy attenuation in multi-layered various soils and rocks and HEMP filter design tool. Especially, the least square fitting method was adopted to analysis for the EM energy attenuation in the soils and rocks because it has a various characteristics based on the many times field test reports.