• Title/Summary/Keyword: High-Strength Steel reinforcement

Search Result 338, Processing Time 0.029 seconds

An Experimental Study on the MSG Reinforcement of Steel Pipe Pile Installed by PRD (MSG공법에 의한 PRD강관말뚝 보강에 관한 사례 연구)

  • Chun, Byungsik;Kang, Heejin;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.5-12
    • /
    • 2007
  • Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The sliding of cut slope frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. The study in this paper shows that mudstone having enough strength in a boring stage has lost the strength after installing PRD (percussion rotary drill) steel pipe pile inducing an insufficient bearing capacity. Field test has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, confirmed by the static load test.

  • PDF

Studies on Improvement of Ductility of Flexural Members (휨재의 인성개선에 관한 연구)

  • 정일영
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.125-132
    • /
    • 1993
  • 콘크리트의 인성개선을 위하여 횡보강근을 사용할 수 있으나 보통강도으 철근ㅇ르 사용하였을 경우에는 조속한 철근의 강상으로 인한 콘크리트으 인성개선효과가 급격히 떨어지기 때문에 고강도 횡보강도에 의한 압축인성 개선효과를 이론 및 실험으로 고찰하였다. 실험결과 각 공시체의 변형능력을 비교해 보면 보통강도근의 경우 콘크리트 응력블록계수가 최대일 때 콘크리트의 압축단 변형도가 1%내외인데 비하여 고강도근으로 횡보강하였을 경우가 콘크리트의 압축변형도는 2%로서 충분한 휨압축 인성개선용으로 콘크리트의 충분한 인성개선이 가능하다고 볼 수 있다.

An Experimental Study for Shear-Carrying Capacity of Reinforced Concrete Beam with GFRP Stirrup (GFRP 스터럽으로 보강된 콘크리트 보의 전단성능에 관한 실험적 연구)

  • Sim, Jong-Sung;Oh, Hong-Seob;Park, Cheol-Woo;Ju, Min-Kwan;Kang, Tae-Sung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.263-266
    • /
    • 2005
  • Recently, many researches for high-strength and high-durability concrete structure have remarkably been studied by adopting new construction material, fiber reinforced polymer (FRP). In connection with these research trend, the shearing capacity of concrete beams reinforced by GFRP stirrup which is developed in this study was evaluated. Experimental variables are span to depth ratio and spacing of shear reinforcement for test. In the result of test, the crack pattern, failure mode and shear load between shear steel reinforcement specimen and GFRP stirrup reinforcement specimen showed similar structural tendency. Therefore, it was investigated that the adaptability of shear-reinforced concrete structure with GFRP stirrup will be improved with further researches of shear design variables.

  • PDF

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.

Mechanical behaviors of concrete combined with steel and synthetic macro-fibers

  • Deng, Zongcai;Li, Jianhui
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.207-220
    • /
    • 2007
  • In this paper, hybrid fibers including high elastic modulus steel fiber and low elastic modulus synthetic macro-fiber (HPP) as two elements were used as reinforcement materials in concrete. The flexural toughness, flexural impact and fracture performance of the composites were investigated systematically. Flexural impact strength was analyzed with statistic analyses method; based on ASTM and JSCE method, an improved flexural toughness evaluating method suitable for concrete with synthetic macro-fiber was proposed herein. The experimental results showed that when the total fiber volume fractions ($V_f^a$) were kept as a constant ($V_f^a=1.5%$), compared with single type of steel or HPP fibers, hybrid fibers can significantly improve the toughness, flexural impact life and fracture properties of concrete. Relative residual strength RSI', impact ductile index ${\lambda}$ and fracture energy $G_F$ of concrete combined with hybrid fibers were respectively 66-80%, 5-12 and 121-137 N/m, which indicated that the synergistic effects (or combined effects) between steel fiber and synthetic macro-fiber were good.

The effect of tensile reinforcement on the behavior of CFRP strengthened reinforced concrete beams: An experimental and analytical study

  • Javad Sabzi;M. Reza Esfahani;Togay Ozbakkaloglu;Ahmadreza Ramezani
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.115-132
    • /
    • 2023
  • The present study experimentally and analytically investigates the effect of tensile reinforcement ratio and arrangement on the behavior of FRP strengthened reinforced concrete (RC) beams. The experimental part of the program was comprised of 8 RC beams that were tested under four-point bending. Results have shown that by keeping the total cross-section area of tensile reinforcing bars constant, in specimens with a low reinforcement ratio, increasing the number and decreasing the diameter of bars in the section lead to 21% and 29% increase in the load-carrying capacity of specimens made with normal and high compressive strength, respectively. In specimens with high reinforcement ratio, a different behavior was observed. Furthermore, the accuracy of the existing code provisions and analytical models in predicting the load-carrying capacity of the FRP strengthened beams failed by premature debonding mode were evaluated. Herein, a model is proposed which considers the tensile reinforcement ratio (as opposed to code provisions) to achieve more accurate results for calculating the load carrying capacity of FRP strengthened RC beams.

Flexural Strength and Ductility of High-Strength R/C Columns subjected to Earthquake Loadings (지진하중을 받는 고강도 콘크리트 기둥의 휨강도와 연성)

  • 박관식;황선경;한병찬;성수용;윤현도;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.145-150
    • /
    • 2001
  • With the increase in the use of High-Strength Concrete(HSC) despite the its weakness like brittle characteristic, it is important to improve the performance of HSC columns, nowadays. Therefore, it is common to use higher strength steel in HSC for the purpose of ductility and strength improvement. This experimental study was set up to investigate the inelastic behavior of HSC(700kg/$cm^{2}$) columns subjected to combined axial and repeated lateral loads. Effects of key variables such as the volumetric ratio of transverse reinforcement, tie configuration and tie yield strength are studied in this research program. Test results indicate that inelastic response of HSC columns improve with proper confinement of core concrete. Increasing the amount of transverse reiuorement results in increased ductility.

  • PDF

Complete moment-curvature relationship of reinforced normal- and high-strength concrete beams experiencing complex load history

  • Au, F.T.K.;Bai, B.Z.Z.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.309-324
    • /
    • 2005
  • The moment-curvature relationship of reinforced concrete beams made of normal- and high-strength concrete experiencing complex load history is studied using a numerical method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the concrete and steel reinforcement. The load history considered includes loading, unloading and reloading. From the results obtained, it is found that the complete moment-curvature relationship, which is also path-dependent, is similar to the material stress-strain relationship with stress-path dependence. However, the unloading part of the moment-curvature relationship of the beam section is elastic but not perfectly linear, although the unloading of both concrete and steel is assumed to be linearly elastic. It is also observed that when unloading happens, the variation of neutral axis depth has different trends for under- and over-reinforced sections. Moreover, even when the section is fully unloaded, there are still residual curvature and stress in the section in some circumstances. Various issues related to the post-peak behavior of reinforced concrete beams are also discussed.

Finite element analysis of slender HSS columns strengthened with high modulus composites

  • Shaat, Amr;Fam, Amir
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.19-34
    • /
    • 2007
  • This paper presents results of a non-linear finite element analysis of axially loaded slender hollow structural section (HSS) columns, strengthened using high modulus carbon-fiber reinforced polymer (CFRP) longitudinal sheets. The model was developed and verified against both experimental and other analytical models. Both geometric and material nonlinearities, which are attributed to the column's initial imperfection and plasticity of steel, respectively, are accounted for. Residual stresses have also been modeled. The axial strength in the experimental study was found to be highly dependent on the column's imperfection. Consequently, no specific correlation was established experimentally between strength gain and amount of CFRP. The model predicted the ultimate loads and failure modes quite reasonably and was used to isolate the effects of CFRP strengthening from the columns' imperfections. It was then used in a parametric study to examine columns of different slenderness ratios, imperfections, number of CFRP layers, and level of residual stresses. The study demonstrated the effectiveness of high modulus CFRP in increasing stiffness and strength of slender columns. While the columns' imperfections affect their actual strengths before and after strengthening,the percentage gain in strength is highly dependent on slenderness ratio and CFRP reinforcement ratio, rather than the value of imperfection.