• Title/Summary/Keyword: High-Speed Railway Tunnel

Search Result 212, Processing Time 0.026 seconds

A Study on the Ground Settlement and Reinforcement Measures in the Case of Tunnelling at the Yangsan Fault (양산단층대 터널시공에서 침하량 및 보강대책에 대한 연구)

  • Jung, Hyuksang;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.35-48
    • /
    • 2009
  • An excessive ground displacement occurs with excavating tunnel in a fault zone because the fault has properties of soft ground in generally. It may have had a bad influence to adjacent structure. So, rapid reduction of ground strength by groundwater inflow should be prevented. It must be established for an impervious and reinforcing effect of ground to ensure a tunnel stability. The ground settlement and reinforcing effects were estimated by numerical analyses on tunnel through 570 m sector in Yangsan fault zone of Keongbu high-speed railway. Settlements evaluated by numerical analysis is similar to those calculated by using equation of Loganathan & Poulo. It was shown that reliable estimate of ground settlement by applying a prediction equation is possible. Applicability of adopted tunnel reinforcement method in fault zone was investigated by results of pilot construction and numerical analysis. Results from this study indicate that the adopted reinforcement method make tunnel displacements and member stresses restrain in design criteria.

  • PDF

Simplified Collision Analysis Method for Submerged Floating Railway Using the Theory of a Beam with an Elastic Foundation (탄성지지 보이론을 이용한 해중철도 간이 충돌해석법)

  • Seo, Sung-Il;Kim, Jin Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.3
    • /
    • pp.202-206
    • /
    • 2013
  • A submerged floating railway is an innovative tunnel infrastructure passing through the deep sea independent of wave and wind so that high speed trains can run on it. It doesn't depend on water depth and is cost effective due to modular construction on land. The construction period can be reduced drastically. This paper introduces the concept design of a submerged floating railway, and for securing safety, proposes a method to analyze the structural behavior of the body in case of collision with a submarine. The theory of a beam with an elastic foundation was used to calculate the equivalent mass of the body so that the perfect elastic collision could be applied to calculate the collision velocity. The maximum deformation and bending moment was analyzed based on energy conservation. To verify the results, a collision analysis using a finite element analysis code was made. Comparing the results confirmed that this simplified collision analysis method gives enough accurate deformation and bending moment to be used for actual estimation in the initial design stage.

Modeling the Effect of Excavation Sequence and Reinforcement on the Response of Tunnels with Discontinuous Deformation Analysis Method (불연속 변형 해석법에 의한 굴착순서 및 지반보강이 터널의 거동에 미치는 영향 모델링)

  • 김용일;김영근
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.25-32
    • /
    • 2000
  • This paper presents two new extensions to the DDA method. The extensions consist of sequential loading or unloading and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the DDA method with the new extensions are presented. Simulations of the underground excavation of the Unju Tunnel of Kyungbu High Speed Railway Project in Korea were carried out to evaluate the influence of excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the DDA program with the three new extensions can now be used as d practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically.

  • PDF

Development of Tunnel-Environment Monitoring System and Its Installation III -Measurement in Solan Tunnel- (터널 환경 측정 시스템 개발 및 측정 III -솔안터널 측정결과 분석-)

  • Park, Won-Hee;Cho, Youngmin;Kwon, Tae-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.637-644
    • /
    • 2016
  • This paper is a follow-up to previous papers entitled, "Development of Tunnel-Environment Monitoring System and Its Installation" I [1] and II [2]. The target tunnel of these studies is the Solan Tunnel, which is a loop-type, single-track, 16.7-km-long tunnel located in mountainous terrain and passing through the Baekdudaegan mountain range. It is an ordinary railway tunnel designed for both freight and passenger trains. We analyzed the environmental conditions of the tunnel using temperature and humidity data recorded over approximately one year. The data were recorded using the Tunnel Rough Environment Measuring System (TREMS), which measures environmental data in subway and high-speed train tunnels and is installed in three locations inside the tunnel. Previous studies analyzed environmental conditions inside tunnels located in or near a city, whereas the tunnel in this study is located in a mountainous area. The tunnel conditions were compared with those measured outside the tunnel for each month. Hourly changes during summer and winter periods were also analyzed, and the environmental conditions at different locations inside the tunnel were compared. The results are widely applicable in studies on the thermal environment and air quality of tunnels, as well as for computer analysis of tunnel airflow such as tunnel ventilation and fire simulations.

An Experimental Study on the Aerodynamic Characteristics of the Robust Optimized Shape of Pantograph Panhead (팬터그래프 팬헤드 강건최적형상에 대한 공기역학적 특성에 관한 실험적 연구)

  • Rho, Joo-Hyun;Kwak, Min-Ho;Park, Hoon-Il;Lee, Young-Bin;Lee, Dong-Ho;Cho, Hwan-Kee
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.2224-2229
    • /
    • 2008
  • High-Speed train has been developed and it becomes faster and environmental friendly. As trains run faster, Noise of trains is generated mainly by aerodynamic disturbance. Pantograph, both ends of trains, and gaps of coaches which are thought to be aerodynamic noise's factors are primarily studied. Pantograph is a similarly shaped metal framework on the roof of an electric high speed train, transmitting current from an overhead electric catenary wire. Panhead which contacts electric wires directly looks like a bluff strut, goes through flows, is sensitive to external disturbances and is one of the most important factors which decide whole vehicles' driving ability. In this study, aerodynamically robust optimized pantograph panhead shape is designed and then evaluated through subsonic wind tunnel test. To compare these with existing panhead rectangular shapes or circular cylinder shapes, By visualizing strong vortex flow patterns which are main noise sources, characteristics are compared and analyzed

  • PDF

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

Pantograph-catenary Dynamic Interaction for a Overhead Line Supported by Noise Barrier

  • Belloli, Marco;Collina, Andrea;Pizzigoni, Bruno
    • International Journal of Railway
    • /
    • v.5 no.2
    • /
    • pp.55-64
    • /
    • 2012
  • Subject of the paper is a particular configuration of overhead line, in which noise barrier structure is used as supports of the catenary instead of standard poles. This configuration is foreseen in case the noise barrier position is in conflict with the poles location. If the catenary is supported by the noise barrier, the motion that the latter undergo due to wave pressure associated to train transit is transmitted to the overhead line, so that potentially it influences the interaction between the catenary itself and the pantograph of the passing train. The paper focuses on the influence of such peculiar configuration on the quality of the current collection of high speed pantograph, for single and double current collection. The study has been carried out first with an experimental investigation on the pressure distribution on noise barrier, both in wind tunnel and with in-field tests. Subsequently a numerical analysis of the dynamics of the barrier subjected to the wave pressure due to train transit has been carried out, and the output of such analysis has been used as input data for the simulation of the pantograph-dynamic interaction at different speeds and with front or rear pantograph in operation. Consideration of structural modifications was then highlighted, in order to reduce the influence on the contact loss percentage.

A study on Train Control System(CBTC) in 5GHz Band (5GHz 대역의 열차제어(CBTC) 적용에 대한 연구)

  • Oh, Gwang-Rok;Park, Jong-Hun;Kim, Goo-Sik;Kim, Keon-Ho;Kim, Jong-Bok;Kim, Ki-Chun
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.652-659
    • /
    • 2011
  • Due to overuse of commercial network systems such as bluetooth and WI-FI, the problems of frequency interruption and line-crossing may arise. For this reason, wireless communication frequency ISM 2.4GHz, a recently adapted concept in Korea which is employeed by RF-CBTC system, is predicted not to have guarantee for outstanding and continuous performance. Therefore in this study, considering these problems, 5GHz capacity wireless Lans with international standard 802.11a/b/g applied were installed in the underground urban transit areas and it was proved that these lans exceeded the performance level of 2.4GHz with international standard 802.11b which is being introduced in the nation. In addition, it was verified through carrying out an application test that the communication condition was stable in a running train with high speed in the tunnel.

  • PDF

3-Dimensional Computations of the Weak Shock Wave Discharged from the Exit of Duct (관출구로부터 방출되는 약한 충격파에 관한 3 차원 수치해석)

  • Kweon, Yong-Hun;Shin, Hyun-Dong;Kim, Heuy-Dong;Lee, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1742-1747
    • /
    • 2003
  • When a shock wave is discharged from the exit of a duct, complicated flow is formed near the duct exit. The flow field is much more complicated under the ground effects or any other objects near the exit of a duct, such as the circumstance near the exit of the high-speed railway tunnel. The resulting flow is essentially three-dimensional unsteady with the effects of strong compressibility. In the current study, three-dimensional flow fields of the weak shock wave which is discharged from the exit of a duct are numerically investigated using a CFD method. Computations are performed for the weak shock wave in the range below 1.5. The results obtained show that the directivity and magnitude of the weak shock discharged strongly depend upon the Mach number of initial shock wave and are significantly influenced by the ground effects.

  • PDF

Prediction of the Noise Level inside Metro Electric Cars (통근형 전동차의 객실 내 소음수준예측)

  • 서승일;최문길;김국현
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.185-191
    • /
    • 1999
  • This paper deals with a method to predict the noise level inside metro electric cars running a single-line tunnel at the speed of 80km per hour using ray tracing method, a kind of ray acoustics generally used for a high-frequency and air-born noise analysis. The interior of the car including a under-frame, seats, side doors, end doors, door-pockets, side panels, end panel, a roof panel and so on is modeled. And in order to describe the noise power coming inside, artificial noise sources are designated using sound transmission loss data of each section measured from simple tests and external noise level. The noise level inside the car is calculated and its properties are investigated. The results satisfy the criteria on noise level inside the car.

  • PDF