• 제목/요약/키워드: High-Speed Machining System

검색결과 210건 처리시간 0.175초

고정밀 연삭기용 주축시스템 설계 (Design of High Precision Spindle System for Grinding Machine)

  • 편영식;이건범;박정현;요꼬이요시유끼;여진욱;안건준;곽철훈
    • 한국공작기계학회논문집
    • /
    • 제12권3호
    • /
    • pp.68-74
    • /
    • 2003
  • Any one of the high precision spindle systems and guide way systems, the high stiffness of structure, the error compensation during assembly, high accuracy control system is inevitable technology for development of high precision machine tools. Especially, among these, design of spindle system is one of the most important technologies leading high precision of machine tool and high quality of manufactured products. A high speed and high precision spindle system, which will be used for final machining of ferrule, is designed considering the effect of heat cutting torque, cutting fore, and work-piece materials. The detailed design and analysis process are presented.

페룰 가공용 고정밀 주축시스템 설계 (Design of High Precision Spindle System for Ferrule Grinding Machine)

  • 편영식;박정현;이건범;요꼬이요시유끼;여진욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.15-19
    • /
    • 2002
  • With the rapid development of industrial technologies, the demand for high precision products has been increasing drastically. For this reason, the need for developing of high performance machine tool, which can ensure high precision, is desired in the industrial fields. Technologies on the spindle system manufacture, guideway manufacture, error compensation, design of bed structure, protection against vibrations, and system integration are core technology for developing of high precision machine tools. Especially, among these, design of spindle system, which is leading precision and manufacturing technique. is one of the most important technologies. A high speed and high precision spindle system, which will be used for final machining of ferrule, is designed considering the effect caused by thermal, cutting torque, cutting farce, and work-piece materials. The detail process of analysis is presented.

  • PDF

슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어 (Cutting Force Regulation in Milling Process Using Sliding Mode Control)

  • 이상조;이용석;고정한
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

Real-time Gap Control for Micro-EDM: Application in a Microfactory

  • Jung, Jae-Won;Ko, Seok-Hoon;Jeong, Young-Hun;Min, Byung-Kwon;Lee, Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.3-6
    • /
    • 2008
  • Electrical discharge machining (EDM) is one of the most widespread nonconventional machining processes. Recently, a low-power micro-EDM process was introduced using a cylindrical electrode. Since its development, micro-EDM has been applied effectively to micromachining, and because the device setup for this process is simple, it is suitable for a microfactory that minimizes machines to fabricate small products economically in one system. In the EDM process, however, the electrode is also removed along with the workpiece. Therefore, the electrode shape and length vary as machining progresses. In this paper, a control method using a high speed realtime voltage measurement is proposed to regulate the rate and amount of material removed. The proposed method is based on the assumption that the volume of the workpiece removed in a single discharge pulses is nearly constant. The discharge pulses are monitored and controlled to regulate the amount of material removed. For this purpose, we developed an algorithm and apparatus for counting the number of discharge pulses. Electrode wear compensation using pulse number information was applied to EDM milling in a microfactory, in which a slight tilt of the workpiece may occur. The proposed control method improves the machining quality and efficiency by eliminating the inaccuracies caused by electrode wear and workpiece tilt.

티타늄의 에어로졸 건조 윤활(ADL) 가공에서 온도 및 표면거칠기 분석 (Analysis of Temperature and Surface Roughness in Aerosol Dry Lubrication (ADL) Machining for Titanium)

  • 한정식;정종윤
    • 산업경영시스템학회지
    • /
    • 제45권4호
    • /
    • pp.61-69
    • /
    • 2022
  • The function of coolant in machining is to reduce the frictional force in the contact area in between the tool and the material, and to increase the precision by cooling the work-piece and the tool, to make the machining surface uniform, and to extend the tool life. However, cutting oil is harmful to the human body because it uses chlorine-based extreme pressure additives to cause environmental pollutants. In this study, the effect of cutting temperature and surface roughness of titanium alloy for medical purpose (Ti-6Al-7Nb) in eco-friendly ADL slot shape machining was investigated using the response surface analysis method. As the design of the experiment, three levels of cutting speed, feed rate, and depth of cut were designed and the experiment was conducted using the central composite planning method. The regression expressions of cutting temperature and surface roughness were respectively obtained as quadratic functions to obtain the minimum value and optimal cutting conditions. The values from this formula and the experimental values were compared. As a result, this study makes and establishes the basis to prevent environmental pollution caused by the use of coolant and to replace it with ADL (Aerosol Dry Lubricant) machining that uses a very small amount of vegetable oil with high pressure.

유전 알고리듬을 이용한 소형 고속스핀들 시스템의 바-피더 지지부의 위치 최적선정 (Optimum Bar-feeder Support Positions of a Miniature High Speed Spindle System by Genetic Algorithm)

  • 이재훈;김무수;박성훈;강재근;이시복
    • 한국정밀공학회지
    • /
    • 제26권11호
    • /
    • pp.99-107
    • /
    • 2009
  • Since a long work piece influences the natural frequency of the entire system with a miniature high speed spindle, a bar-feeder is used for a long work piece to improve the vibration characteristics of a spindle system. Therefore, it is very important to design optimally support positions between a bar-feeder and a long work piece for a miniature high speed spindle system. The goal of the current paper is to present an optimization method for the design of support positions between a bar-feeder and a long work piece. This optimization method is effectively composed of the method of design of experiment (DOE), the artificial neural network (ANN) and the genetic algorithm (GA). First, finite element models which include a high speed spindle, a long work piece and the support conditions of a bar-feeder were generated from the orthogonal array of the DOE method, and then the results of natural vibration analysis using FEM were provided for the learning inputs of the neural network. Finally, the design of bar-feeder support positions was optimized by the genetic algorithm method using the neural network approximations.

평엔드밀 포켓가공시 절삭력과 공구변형에 관한 연구 (A Study on the Cutting Forces and Tool Deformation when Flat-ended Pocket Machining)

  • 최성윤;권대규;박인수;왕덕현
    • 한국기계가공학회지
    • /
    • 제16권2호
    • /
    • pp.28-33
    • /
    • 2017
  • Recently, the operation of precision pocket machining has been studied for the high speed and accuracy in industry to increase production and quality. Moreover, the demand for products with complex 3D free-curved surface shapes has increasing rapidly in the development of computer systems, CNC machining, and CAM software in various manufacturing fields, especially in automotive engineering. The type of aluminum (Al6061) that is widely used in aerospace fields was used in this study, and end-mill down cutting was conducted in fillet cutting at a corner with end-mill tools for various process conditions. The experimental results may demonstrate that the end mill cutter with four blades is more advantageous than that of the two blades on shape forming in the same condition precise machining conditions. It was also found that cutting forces and tool deformation increased as the cutting speed increased. When the tool was located at $45^{\circ}$ (four locations), the corner was found to conduct the maximum cutting force rather than the start point of the workpiece. The experimental research is expected to increase efficiency when the economical precision machining methods are required for various cutting conditions in industry.

A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

  • He, Shanshan;Ou, Daojiang;Yan, Changya;Lee, Chen-Han
    • Journal of Computational Design and Engineering
    • /
    • 제2권4호
    • /
    • pp.218-232
    • /
    • 2015
  • Piecewise linear (G01-based) tool paths generated by CAM systems lack $G_1$ and $G_2$ continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical instability, lack of chord error constraint, and lack of assurance of a usable result. Progressive and Iterative Approximation for Least Squares (LSPIA) is an efficient method for data fitting that solves the numerical instability problem. However, it does not consider chord errors and needs more work to ensure ironclad results for commercial applications. In this paper, we use LSPIA method incorporating Energy term (ELSPIA) to avoid the numerical instability, and lower chord errors by using stretching energy term. We implement several algorithm improvements, including (1) an improved technique for initial control point determination over Dominant Point Method, (2) an algorithm that updates foot point parameters as needed, (3) analysis of the degrees of freedom of control points to insert new control points only when needed, (4) chord error refinement using a similar ELSPIA method with the above enhancements. The proposed approach can generate a shape-preserving B-spline curve. Experiments with data analysis and machining tests are presented for verification of quality and efficiency. Comparisons with other known solutions are included to evaluate the worthiness of the proposed solution.

NC Program Generation Using Off-Line Teaching of Deburring Path

  • Kim, Sun-Ho;Park, Kyoung-Taik;Lee, Man-Hyung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.118-126
    • /
    • 2000
  • Die-casting burr to casting process is removed by post-process for assembly and quality control of product. Though robot has been widely used for deburring job before. CNC exclusive machine is currently developed for high power, high speed machining and quick tool change. Deburring tool path with complex 3D curve type is defined to make out deburring NC program. But there is no efficient method to define it currently used methods with teaching probe on machine. In this study the efficient method to make out deburring NC program is developed. 5-axis digitizing machine is used to receive data of deburring path. And the post process for NC program generation is developed in consideration of the machining conditions. The developed system is not dependent on the skill of operator and has the advantage to maintain the flexibility of job to modify NC program due to the wear of tool and aging of the die casting.

  • PDF

오프 라인 티칭에 의한 디버링 NC 프로그램 생성 및 가공 (NC Program Generation Using Off-line Teaching of Deburring Path)

  • 김선호;박경택;윤영진;이만형;이익희
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.93-100
    • /
    • 2000
  • Die-casting burr due to casting process is removed by post-process for assembly and quality control of product. Though robot has been widely used for deburring job before, CNC exclusive machine is currently developed f3r high power, high speed machining and quick tool change. Deburring tool path with complex 3D curve type is defined to make out deburring NC program. But there is no efficient method to define it currently used methods with teaching probe on machine. In this study the efficient method to make out deburring NC program is developed. 5-axis digitizing machine is used to receive data of deburring path. And the post processor for NC program generation is developed in consideration of the machining conditions. The developed system is not dependent on the skill of operator and has the advantage to maintain the flexibility of job to modify NC program due to the wear of tool and aging of the die casting.

  • PDF