• Title/Summary/Keyword: High-Speed Boat

Search Result 75, Processing Time 0.024 seconds

Hull form development of the high speed small fishing boat (고속 소형 어선의 기본선행 개발)

  • Lee, Kwi-Joo;Joa, Soon-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.68-74
    • /
    • 2008
  • This study is concerned with the development of the basic planing hull form of small fishing boat in 25 knots high speed. A series of model test to determine the optimum performance hull form of actual fishing boat with 10 gross tonnage was carried out for 5 models made available planing hull form in the circulation water channel. Model test was performed with the resistance test to study the hydrodynamic characteristics of model ships and the sinkage and trim measurement to investigate the stability of model ships and also the wave pattern observation to analyze the effectiveness of model ships. As the result, the planing hull form of P-4 with deep V type bow can be derived as the best hull form with good performance especially in ship's resistance efficiency showing less residual resistance and sinkage and trim and the spray effect, etc..

A Study on the Hull Form Development and Resistance Performance of a High-Speed Coastal Patrol Boat (고속 연안순시선 선형개발과 저항성능에 관한 연구)

  • 정우철;정석호;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.44-49
    • /
    • 2004
  • Initial hull form of 10 G/T and 40 knots class coastal patrol boat is newly developed. The resistance performances are experimentally and numerically investigated by model test and CFD technique. The effect of initial trim and a fin attached at hull side are studied together. Wave patterns are observed to make clear the relation between the performance and the wave characteristics. It can be found that the initial trim plays a role in increasing the resistance performance above a certain velocity, and the CFD technique can be used at the initial design stage of a high-speed planning boats.

Hull Form Development of a Small-Size High-Speed Coastal Leisure Boat (연안용 소형 고속 레저선 선형개발)

  • 정우철;박제웅;정석호
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.80-84
    • /
    • 2004
  • The initial hull form of a 3 G/T and 30 knots class coastal leisure boat is newly developed. The performances measured, resistance, trim and sinkage, are investigated in a high-speed, circulating water channel (CWC). The effect of a fin attached on the hull side is studied together. Wave patterns are observed to clarify the relationship between the resistance performance and the wave characteristics. It can be found that the fin plays a role of increasing the resistance performance above a certain velocity.

Study on Hull Form Development and Resistance Performance of High Speed Aluminum Leisure Boat (30피트급 고속 알루미늄 레저보트 선형개발과 저항성능에 관한 연구)

  • Jeong, Uh-Cheul;Kim, Do-Jung;Choi, Hong-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.14-18
    • /
    • 2012
  • A 30ft class aluminum leisure boat is newly developed and the resistance performances are investigated by a model test at a high-speed circulating water channel. The effect of a fin attached to the side of the hull is studied at two different displacements. Wave patterns are observed to make clear the relationship between the resistance performance and wave characteristics. It can be found that a chine position at the draft line can have a strong effect on the resistance performance around a certain velocity range.

Performance Improvement of a High Speed Planing Boat by a Stern Wedge

  • Yang, Seung-Il;Kim, Seong-Hwan
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.87-98
    • /
    • 1984
  • An experimental study carried out to predict the performance characteristics of a high speed planing boat at the two displacements whose hull form shows hard chines form transom to bow. In the resistance test the planing hull model was porpoising at and above 30 knots for both displacements of 30 tons and 24 tons. A small stern wedge was newly designed and attached across hull bottom. The planing hull model with the stern sedge did not show any porpoising up to the speed of 45 knots for both displacements and it analysed results shows the improvement of resistance performance and planing performance comparing with those of original hull form; i.e. for displacement of 30 tons the effective power and trim angle were reduced by 18.9% and 5.71 degrees at the speed of 28 knots, and for the displacement of 24 tons the effective power and trim angle were reduced by 23.63% and 4.37 degrees at the speed of 28 knots, respectively.

  • PDF

Study of Hull Form Development and Resistance Performance of Catamaran-type High Speed Fishing Leisure Boat (고속 쌍동형 낚시 레저보트 선형개발과 저항성능에 관한 연구)

  • Jeong, Uh-Cheul;Kwon, Soo-Yeon;Choi, Ji-Hoon;Kim, Do-Jung;Hong, Ki-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.1-6
    • /
    • 2013
  • A 25ft class fishing leisure boat is developed, and the resistance performances are investigated by a model test in a high-speed circulating water channel. The design speed of the developed ship is 25 knots using a 150 ps outboard engine. A catamanan type hull form using a planing section is adopted considering the Froude number and large deck area. The effect of a center body attached on the bottom of the cross deck is studied under various conditions. Wave patterns are observed to make clear the relationship between the resistance performance and the wave characteristics. The results show that the shape of the center body and the position of the chine line can have a strong effect on the resistance performance in a certain velocity range.

Structural Strength Assessment and Optimization for 20 Feet Class Power Boat (20피트급 파워보트의 구조강도 평가 및 최적화)

  • Yum, Jae-Seon;Yoo, Jaehoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.108-114
    • /
    • 2016
  • Recently, there has been a growing interest in marine leisure sports and high speed power boat for fishing. The prototype of 20 feet class power boat was developed and authors are joined in this government-led project. The research was performed to evaluate the optimal structure and design of the structural strength necessary to ensure the structural safety of the power boat. A new material ROCICORE fiber added to the mat and roving was adopted for high-power tenacity. ANSYS Workbench has been used to make the structural model, evaluate the strength and optimize the structural design. The response of the structure to quasi-static slamming loads according to the rules and regulations of ISO 12215-5, Lloyd’s Register of Shipping and Korean Register has been implemented and studied. An optimization study for the structural response is carried out by changing the plate thickness and section modulus of stiffeners. The power boat structure derived fuel efficiency is optimized by performing the best possible structural design to minimize the hull weight.

Modeling of steady motion and vertical-plane dynamics of a tunnel hull

  • Chaney, Christopher S.;Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.323-332
    • /
    • 2014
  • High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.

The study on the development of 6m class sports RIB (팽창식 튜브를 부착한 6m급 스포츠 보트 개발에 관한 연구)

  • Kim, Hyoung-Min;Suh, Sung-Bu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.606-613
    • /
    • 2007
  • The 6m class high speed boat is developed with a durable hull and inflatable tube, which is called RIB(Rigid Inflatable Boat), for the purpose of marine leisure. In the stage of the conceptual design, its requirements to be optimized are determined based on the presented information of similar marine leisure RIBs. The 3-D graphical technique using Marine Rhino is utilized to optimize the compartment layout of RIB. The stability analysis is performed for the light and full load conditions with and without the inflatable tube. In addition, the sea keeping and hydrodynamic performance was tested using the proto-type ship in the sea condition. From the results of the computation and the sea trial test, it shows that the performance of the marine leisure RIB satisfies the speed, the convenience, and the stability requirements. This study provides the typical information of the design factors and the procedure to manufacture the marine leisure RIB.