• Title/Summary/Keyword: High-Reliability

Search Result 6,454, Processing Time 0.033 seconds

Reliability Analysis Method for Repeated UT Measurement Data in Nuclear Power Plants (원전 배관의 반복 측정 데이터에 대한 신뢰도 분석 방법)

  • Yun, Hun;Hwang, Kyeong-Mo
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.142-148
    • /
    • 2013
  • Safety is a major concern in Nuclear Power Plants (NPPs). Piping systems in NPPs are very complex and composed of many components such as tees, elbows, expanders and straight pipes. The high pressure and high temperature water flows inside piping components. As high speed water flows inside piping, the pipe wall thinning occurs in various reasons such as FAC (Flow Accelerated Corrosion), LDIE (Liquid Droplet Impingement Erosion) and Flashing. To inspect the wall thinning phenomenon and protect the piping from damages, piping components are checked by UT measurement in every overhaul. During every overhaul, approximately 200~300 components (40,000~60,000 UT data) are examined in NPPs. There are some methods from EPRI for evaluating wear rate of components. However, only few studies have been conducted to find out the raw data reliability for the wear rate evaluation. Securing the reliable raw data is the key factor for a reasonable evaluation. This paper suggests the reliability analysis method for the repeatedly measured data for wear rate evaluation.

Reliability prediction of Centerless grinding machine (무심연삭 시스템의 신뢰성 예측)

  • Choi, H.Z.;Lee, S.W.;Kim, G.H.;ChoI, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1105-1108
    • /
    • 2004
  • As recently optical communication industry is developed, request of optical communication part is increased. Ferrule is very important part which determines transmission efficiency and quality of information in the optical communication part. Most of ferrule processes are grinding which request high processing precision. The ultra precision centerless grinding machine for ferrule grinding was designed. The centerless grinding machine is composed of the high damping bed, grinding wheel spindle unit, regulating wheel spindle unit, feeding table and dressing unit. Reliability prediction was very important for the high quality design. In this study, centerless grinding machine was predicted reliability.

  • PDF

Acceleration Test for Package of High Power Phosphor Converted White Light Emitting Diodes (고출력 형광체변환 백색 LED 패키지의 가속시험)

  • Chan, Sung-Il;Yu, Yang-Gi;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.10 no.2
    • /
    • pp.137-148
    • /
    • 2010
  • This study deals with the accelerated life test of high power phosphor converted white Light Emitting Diodes (High power LEDs). Samples were aged at $110^{\circ}C$/85% RH and $130^{\circ}C$/85% RH up to 900 hours under non-biased condition. The stress induced a luminous flux decay on LEDs in all the conditions. Aged devices exhibited modification of package silicon color from white to yellowish brown. The instability of the package contributes to the overall degradation of optical lens and structural degradations such as generating bubbles. The degradation mechanisms of lumen decay and reduction of spectrum intensity were ascribed to hygro-mechanical stress which results in package instabilities.

Reliability Estimation of High Voltage Ceramic Capacitor by Failure Analysis (고압 커패시터의 고장 분석을 통한 신뢰도 예측)

  • Yang, Seok-Jun;Kim, Jin-Woo;Shin, Seung-Woo;Lee, Hee-Jin;Shin, Seung-Hun;Ryu, Dong-Su;Chang, Seog-Weon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.618-629
    • /
    • 2001
  • This paper presents a result of failure analysis and reliability evaluation for high voltage ceramic capacitors. The failure modes and failure mechanisms were studied in two ways in order to estimate component life and failure rate. The causes of failure mechanisms for zero resistance phenomena under withstanding voltage test in high voltage ceramic capacitors molded by epoxy resin were studied by establishing an effective root cause failure analysis. Particular emphasis was placed on breakdown phenomena at the ceramic-epoxy interface. The validity of the results in this study was confirmed by the results of accelerated testing. Thermal cycling test for high voltage ceramic capacitor mounted on a magnetron were implemented. Delamination between ceramic and epoxy, which might cause electrical short in underlying circuitry, can occur during curing or thermal cycle. The results can be conveniently used to quickly identify defective lots, determine $B_{10}$ life estimation each lot at the level of inspection, and detect major changes in the vendors processes. Also, the condition for dielectric breakdown was investigated for the estimation of failure rate with load-strength interference model.

  • PDF

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.

Reliability Development Programs for Korean Weapon Systems

  • Hong, Yeon-Woong;Park, Sung-Ho;Cho, Kyu-Sang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.727-742
    • /
    • 2006
  • In general, weapon systems require very high reliability. Recently Korean defense reliability technologies growth rapidly. However, there are some matters of reform in reliability management, reliability assurance, and defense acquisition environment, etc. In this paper, we propose the reliability development plan for Korean defense system as follows; 1) reliability improvement programs for each acquisition stages, 2) reliability improvement methods for logistics support, 3) reliability improvement programs for developers and manufacturers, 4) reform matters for the defense acquisition law, 6) establishment of defense reliability assessment center and defense reliability committee.

  • PDF

Reliability Prediction of High Performance Mooring Platform in Development Stage Using Safety Integrity Level and MTTFd (안전무결성 수준 및 MTTFd를 활용한 개발단계의 고성능 지상체 신뢰도 예측 방안)

  • Min-Young Lee;Sang-Boo Kim;In-Hwa Bae;So-Yeon Kang;Woo-Yeong Kwak;Sung-Gun Lee;Keuk-Ki Oh;Dae-Rim Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.3
    • /
    • pp.609-618
    • /
    • 2024
  • System reliability prediction in the development stage is increasingly crucial to reliability growth management to satisfy its target reliability, since modern system usually takes a form of complex composition and various complicated functions. In most cases of development stage, however, the information available for system reliability prediction is very limited, making it difficult to predict system reliability more precisely as in the production and operating stages. In this study, a system reliability prediction process is considered when the reliability-related information such as SIL (Safety Integrity Level) and MTTFd (Mean Time to Dangerous Failure) is available in the development stage. It is suggested that when the SIL or MTTFd of a system component is known and the field operational data of similar system is given, the reliability prediction could be performed using the scaling factor for the SIL or MTTFd value of the component based on the similar system's field operational data analysis. Predicting a system reliability is then adjusted with the conversion factor reflecting the temperature condition of the environment in which the system actually operates. Finally, the case of applying the proposed system reliability prediction process to a high performance mooring platform is dealt with.

Effect of High Pressure Deuterium post-annealing Annealing on the Electrical and Reliability properties of 80nm DRAM (80nm DRAM의 고압중수소 열처리에 따른 전기적 신뢰성 특성 영향)

  • Chang, Hyo-Sik;Cho, Kyoon;Suh, Jai-Bum;Hong, Sung-Joo;Jang, Man;Hwang, Hyun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.117-118
    • /
    • 2008
  • High-pressure deuterium annealing process is proposed and investigated for enhanced electrical and reliability properties of 512Mb DDR2 DRAM without increase in process complexity. High pressure deuterium annealing (HPDA) introduced during post metal anneal (PMA) improves not only DRAM performance but also reliability characteristics of MOSFET. Compared with a control sample annealed in a conventional forming gas, additional annealing in a high pressure deuterium ambient at $400^{\circ}C$ for 30 min decreased G1DL current and junction leakage. The improvements can be explained by deuterium incorporation at $SiO_2$/Si substrate interface near isolation trench edge.

  • PDF

A Study of assessment criteria and reliability improvement for power supply of electrodeless fluorescent lamp (고효율 무전극형광등용 전원장치의 평가기준 및 신뢰성향상 연구)

  • 함증걸;신종욱
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.2
    • /
    • pp.34-40
    • /
    • 2003
  • This paper gives an assessment criteria and reliability improvement for high frequency power supply of high efficacy electrodeless fluorescent lamp. The electrodeless fluorescent lamp system consist of electrodeless fluorescent lamp, high frequency power supply and lighting fixtures. The high frequency power supply has a shortest life at the system. Therefore It is need th assess the Failure Rate or mean Time To Failure(MTTF) for the high frequency power supply of electrodeless fluorescent lamp system and improve the reliability at design. We suggest the assessment criteria and improve methods of the reliability on the design basis for the electodeless fluorescent system.

Reliability Assesment of 22.9kV High Temperature Superconducting Cable System (22.9kV 초전도케이블 시스템의 신뢰성 평가)

  • Sohn, Song-Ho;Lim, Ji-Hyun;Sung, Tae-Hyun;Ryoo, Hee-Suk;Yang, Hyung-Suk;Kim, Dong-Lak;Hwang, Si-Dole
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.248-248
    • /
    • 2007
  • Demands for electricity are growing, whereas the rate of electricity infrastructure's construction declines gradually. To keep the balance of the demand and supply, the share of underground transmission line will be increased from 8.3% to 10.5% in 2020 but it will be accompanied with enormous public expenses. A great concern in high capacity transmission is on the increase so as to maximize the spacial efficiency. High Temperature Superconducting (HTS) cable is in the lime light which has the merits of environment-friendly, low transmission loss and high transmission with low voltage, but the reliability verification as a power system is yet to be solved. KEPCO completed the installation and acceptance of $3{\phi}$, 22.9kV, 1250A class HTS cable system in 2006 and the long term test is in progress. The test results focusing on long term reliability are presented in this paper.

  • PDF