• Title/Summary/Keyword: High-Power Induction Motor

Search Result 337, Processing Time 0.028 seconds

A study on the speed characteristic of linear induction motor (유도형 리니어 모터의 속도특성에 관한 연구)

  • CHUNG B. H.;CHOI M. H.;CHO G. B.;BAEK H. L.;SEO J. Y.;KIM D. G.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.151-154
    • /
    • 2004
  • To use the SLIM for servo system, the exact account of thrust about the initial speed is needed, but analyzing by equivalent circuit analyzing methode such as rotary induction motor, the error occurs because of the end effect. So, we applied the equivalent circuit considering the end effect of SLIM in this paper. The current control system is advanced the space vector pulse width modulation by using high arithmetic performance microprocessor such as DSP. In this paper, we use the dynamic characteristic analyzing methode that can calculate efficiently the end effect by using equivalent circuit methode in the operating SLIM system modeling and examine the output characteristics of SVPWM with PI controller.

  • PDF

A Study on Parameter On-line Estimation of Induction Motor using MRAS (MRAS를 이용한 유도전동기의 파라미터 온라인 추정에 관한 연구)

  • Yoon In-Sic;Byun Sung-Hoon;Kim Kyung-Seo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.188-191
    • /
    • 2002
  • This paper presents a method for on-line estimation of rotor time constant of induction motor. The proposed method applies a model reference adaptive system(MRAS) using rotor flux vector. The MRAS consists of two independent observers to estimate the rotor flux vector; one based on voltage equations of rotor flux vector, the other based on current equations of them. The MRAS utilizes concept of auxiliary variables to normalize observer output and decrease high-frequency components of its input. Experimental results verify the validity and usefulness of proposed method

  • PDF

Compensation of the Rotor Time Constant using Fuzzy Controller in Induction Motor Vector Control (유도전동기 벡터제어에서 퍼지제어기에 의한 시정수 보상)

  • Cha Duck-Gun;Park Jae-Sung;Park Gun-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.21-24
    • /
    • 2002
  • The vector control system of an induction motor is the high performance drive system to achieve the instantaneous torque control. The vector control system is greatly divided into the direct control, and the indirect control that the most widely is used, The indirect vector control needs the rotor time constant, which changes widely according to the temperature, frequency, and current amplitude. The incorrect time constant leads to the saturation of magnetic flux or under-excitation phenomena. As a result, that deteriorate the control performance. Therefore, in this paper, the effect of time constant variation is investigated and its on-line tuning algorithm is proposed. The time constant using the torque angles was calculated and that of the validity of algorithm proposed was proved through the computer simulation and the experiment.

  • PDF

The development of a propulsion system for MAGLEV vehicle (자기부상열차용 추진시스템의 개발)

  • Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.637-641
    • /
    • 1992
  • This paper presents a fundanental method to analyze and design a Single-sided Linear Induction Motor(SLIM) as a propulsion system for magnetic levitation vehicles of DAEJEON EXPO'93 in Korea. The performance characteristics of the designed SLIM are examinated by the thrust force, the normal force, the efficiency and the power factor according to the change of input frequency. The dimension of the SLIM is 1792mm long ${\times}$ 200mm width ${\times}$ 58mm high and the rated thrust is 1300 Newtons at the operating speed of 40 Km/h.

  • PDF

An Optimal Efficiency Control of Reluctance Synchronous Motor using Direct Torque Control (직접 토크 제어를 이용한 릴럭턴스 동기 전동기의 최대 효율제어)

  • 김남훈;김동희;노채균;김민회;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.211-220
    • /
    • 2003
  • This paper presents an implementation of direct torque control (DTC) of Reluctance Synchronous Motor (RSM) with an efficiency optimization. The equipment circuit in Reluctance Synchronous Motor which consider with iron losses is theoretically analyzed and the optimal current ration between torque current and exiting current analytically derived to drive RSM at maximum efficiency. For RSM, torque dynamics can be maintained even with controlling the flux level because a torque is directly proportional to the stator current unlike induction motor. The experimental results are presented to validate the applicability of the proposed method. The developed control system show high efficiency features with 1.0 Kw RSM having 2.57 ratio of d/q reluctance.

A Study on the Spindle Motor Drive for the Spindle of Machining Center (공작기계 주축용 스핀들 전동기 구동에 관한 연구)

  • Han, Y.S.;Ahn, S.C.;Song, J.H.;Lee, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2110-2112
    • /
    • 1997
  • The induction motor drive for the spindle of machining center is required to do not only a constant torque operation in low speed region(below base rpm), but also a constant power operation in high speed region(beyond base rpm). Also, control voltage shortage due to high speed operation must be overcome. The vector controlled inverter system with input 3 phase pwm converter is designed for that kind of condition. We experimented the performance of the inverter system with spindle motor made by Hyosung industries co.

  • PDF

Modeling of Switched Reluctance Motor (SRM) Drive and Control System using Rotor Position Information Sensor (회전자 위치정보 센서를 이용한 Switched Reluctance Motor (SRM)의 구동 및 제어 시스템 Modeling)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In recent years, permanent magnets such as IPM (Interior Permanent Magnet) motors or SPM (Surface Permanent Magnet) motors that can obtain high efficiency and power density by inserting rare earth permanent magnets into the rotor are used. Research on the used electric motor is being actively conducted. Since it uses a permanent magnet, it has the advantage of high efficiency and high power density compared to reluctance motors and induction motors, but by inserting a permanent magnet into the rotor, it operates at high speeds and decreases reliability due to demagnetization of the permanent magnets, and increases the cost of rare earth metals. In this paper, in accordance with the development of future technology that can replace rare-earth permanent magnet motors and technological preoccupation of rare-earth reduction type motors and de-rare-earth motors, switched reluctance motors that do not require permanent magnets (Switched Reluvtance Motors) Motor, SRM) to drive driving control. Using the 3-phase SRM library provided by the PSIM simulation program, we will study the driving and control system modeling of SRM using the rotor position information sensor.

MRAS Speed Estimator Based on Type-1 and Type-2 Fuzzy Logic Controller for the Speed Sensorless DTFC-SVPWM of an Induction Motor Drive

  • Ramesh, Tejavathu;Panda, Anup Kumar;Kumar, S. Shiva
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.730-740
    • /
    • 2015
  • This paper presents model reference adaptive system speed estimators based on Type-1 and Type-2 fuzzy logic controllers for the speed sensorless direct torque and flux control of an induction motor drive (IMD) using space vector pulse width modulation. A Type-1 fuzzy logic controller (T1FLC) based adaptation mechanism scheme is initially presented to achieve high performance sensorless drive in both transient as well as in steady-state conditions. However, the Type-1 fuzzy sets are certain and cannot work effectively when a higher degree of uncertainties occurs in the system, which can be caused by sudden changes in speed or different load disturbances and, process noise. Therefore, a new Type-2 FLC (T2FLC) - based adaptation mechanism scheme is proposed to better handle the higher degree of uncertainties, improve the performance, and is also robust to different load torque and sudden changes in speed conditions. The detailed performance of different adaptation mechanism schemes are performed in a MATLAB/Simulink environment with a speed sensor and sensorless modes of operation when an IMD is operates under different operating conditions, such as no-load, load, and sudden changes in speed. To validate the different control approaches, the system is also implemented on a real-time system, and adequate results are reported for its validation.

Harmonics Control of Electric Propulsion System using Direct Torque Control (직접벡터제어방식을 사용하는 전기추진시스템의 고조파 제어)

  • Kim, Jong-Su;Oh, Sae-Gin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2618-2624
    • /
    • 2009
  • Harmonics (or distortion in wave form) has always existed in electrical power systems. It is harmless as long as its level is not substantial. However, with the recent rapid advancement of power electronics technology, so-called nonlinear loads, such as variable frequency drives for motor power/speed control, are increasingly finding their way to shipboard or offshore applications. In this paper a new approach to direct torque control (DTC) of induction motor drive is presented. In comparison with the conventional DTC methods the inverter switching frequency is constant and is dramatically increased, requiring neither any increase of the sampling frequency, nor any high frequency dither signal. The well-developed space vector modulation technique is applied to inverter control in the proposed DTC-based induction motor drive system, thereby dramatically reducing the current harmonics. As compared to the existing DTC approach with constant inverter switching frequency, the presented new approach does not invoke any concept of deadbeat control, thereby dramatically reducing the computations.

The Development of High Power 3 Level Inverter based on FPGA

  • Peng, Xiao-Lin;Bayasgalan, D;Ryu, Ji-Su;Lee, Sang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.315-316
    • /
    • 2012
  • Three-level neutral point clamping (NPC) converter has been widely applied in high power drive system. And in this paper, a novel method is proposed to realize this algorithm based on FPGA, And the system is consist of two parts, the DSP part and FPGA part, the DSP part includes the control algorithms and the FPGA part works to generate and putout 12 PWM pulses. And the system is tested and verified using both simulation and experimentation.

  • PDF