• Title/Summary/Keyword: High-Mn steel

Search Result 223, Processing Time 0.023 seconds

Effect of Alloying Elements on Mechanical Properties and Microstructure of Steel Bar Fabricated by Endless Bar Rolling System with Flash Butt Welding (플래시버트 용접과 연속열간압연법으로 제조된 철근의 기계적 성질과 미세조직에 미치는 합금원소의 영향)

  • Kim, Ki-Won;Cho, Seung-Jae;Kang, Chung-Yum
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.52-59
    • /
    • 2009
  • Flash butt welding is applied in many industries. New technology was developed recently for joining billets which called "EBROS (Endless Bar Rolling System)". After reheating billets in furnace, two billets were joined using flash butt welding. The objective of this study was to investigate the effect of alloying elements on mechanical properties of flash butt welded zone of hot rolled steel bar. The tensile properties on welded zone of Fe-Mn steel and Fe-Mn-V steel were dropped as compared with non-welded zone. Fe-Mn-Nb steel was opposed to the former. It was found that the white band at the welded zone had high ferrite volume fraction and large ferrite grain size. The vertical white band between flash butt welded billets was transformed into an arrowhead it of steel bar. According to this band, softening has been appeared. There was a interesting phenomenon with HAZ of Fe-Mn-Nb Steel, 40nm scale of particles were observed and hardness of HAZ was higher than non-welded zone.

Effect of Cr on Mechanical Properties and Microstructure in 0.27% C-1.0% Si-1.5% Mn Steel (0.27% C-1.0% Si-1.5% Mn 강의 미세조직과 기계적성질에 미치는 Cr의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.181-189
    • /
    • 2016
  • The variation in microstructure and mechanical properties during heat treatment was examined in a series of 0.27% C-1.0% Si-1.5% Mn steels with chromium contents in the range of 0 to 1.0 wt%. It was found that chromium decreased the martensite packet size through the austenite grain refinement and increased tensile strength in the as-quenched steel, about 70 MPa per 1.0 wt%. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel showed tensile strength of 1700 MPa in the as-quenched steel. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel revealed a full martensitic structure after air cooling from $900^{\circ}C$ to room temperature, showing air hardening characteristics. Tempering at $150^{\circ}C$ slightly decreased the tensile strength and increased elongation, which is in a good agreement with impact toughness result.

Influences of Casting Conditions and Constituent Materials on the Production of Duo-castings (이중복합 주조체의 제조에 미치는 구성 재질과 주조 조건의 영향)

  • Jung, Jae-Young
    • Journal of Korea Foundry Society
    • /
    • v.38 no.1
    • /
    • pp.16-26
    • /
    • 2018
  • In this study, the effects of the pouring temperature, preheating temperature, surface condition and fraction of the wear resistant part on the production of duo-castings were investigated using a high Cr white cast iron with excellent abrasion resistance and a low Cr alloy steel with good toughness. The constituent materials of the duo-castings were designed to have high hardness, fracture toughness and abrasive wear resistance for the replacement of high Mn alloy steels with low abrasive wear resistance. In particular, the amount of abrasive wear of 17% Cr white cast iron was about 1/20 of that of high Mn alloy steel. There was an intermediate area of about 3mm due to local melting at the bonding interface of the duo-castings. These intermediate regions were different from those of the constituent materials in chemical composition and microstructure. This region led to fracture within the wear resistant part rather than at the bonding interface in the bending strength test. The bending fracture strengths were 516-824 MPa, which were equivalent to the bending proof strength of high Mn steel. The effects of various casting conditions on the duo-cast behavior were studied by simple pouring of low Cr alloy steel melt, but the results proved practically impossible to manufacture duo-castings with a sound bonding interface. However, the external heating method was suitable for the production of duo-castings with a sound bonding interface.

Surface Characteristics of the Galvannealed Coating in Interstitial-Free High Strengthen Steels Containing Si and Mn (Si, Mn함유 IF 고강도 합금화 용융아연도금강판의 표면특성)

  • Jeon, Sun-Ho;Chin, Kwang-Geun;Kim, Dai-Ryong
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.58-64
    • /
    • 2008
  • Surface-void defects observed on the galvannealed(GA) steel sheets in Interstitial-free high-strengthened steels containing Si and Mn have been investigated using the combination of the FIB(Focused Ion Beam) and FE-TEM(Field Emission-Transmission Electron Microscope) techniques. The scanning ion micrographs of cross-section microstructure of defects showed that these defects were identified as craters which were formed on the projecting part of the substrate surface. Also, those craters were formed on the Si or Mn-Si oxides film through the whole interface between galvannealed coating and steel substrate. Interface enrichments and oxidations of the active alloying elements such as Si and Mn during reduction annealing process for galvanizing were found to interrupt Zn and Fe interdiffusion during galvannealing process. During galvannealing, Zn and Fe interdiffusion is preferentially started on the clean substrate surface which have no oxide layer on. And then, during galvannealing, crater is developed with consumption of molten zinc on the oxide layer.

Electrodeposition of Zn-Mn Alloys on Steel from acidic chloride bath (염산욕에서 제조된 강판표면의 Zn-Mn 합금에 대한 연구)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.271-276
    • /
    • 2018
  • In the industry, Zn galvanizing on the steel using the principle of sacrificial anode is used. The steel have some problem, specially corrosion problem. To solve corrosion problem, Zn-Mn alloy plating has been studied as one of the measures to increase the corrosion resistance rather than pure zinc plating. It is possible to be applied to automotive parts requiring high corrosion resistance even though the plating cost is high. In this study, Zn-Mn alloys were electrodeposited from an acidic chloride bath. The influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. As the current density of the cathode increases, Zn content of electrodeposit decrease and Mn content of electrodeposit increase. As the temperature of the electrolyte increases, Zn content of electrodeposit decrease and Mn content of electrodeposit increase. The results are explained by the cathode overvoltage curve of Mn and Zn.

The Effect of Deformation Induced Phase on Tensile Properties and Fatigue Behavior of Austenitic High Mn steel (오스테나이트계 고망간강에서 인장 특성과 피로거동에 미치는 변형유기상의 영향)

  • Choi, S.M.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.277-287
    • /
    • 1994
  • The effect of grain size on the tensile properties and fatigue behavior of austenitic high Mn steel has been investigated. The recrystallized austenite grain size of the cold rolled high Mn steel was increased as the annealing temperature increased from $600^{\circ}C$ to $1000^{\circ}C$. Larger austenite grain size decreased the yield strength and the tensile strength, and increased the uniform elongation due to transformation of some austenite into twins or E-martensite phase during deformation. Austenite grain refinement increased the tendency to form dislocation cells, instead. The specimen annealed at $1000^{\circ}C$ with large grain size showed lower fatigue crack propagation rate in low ${\Delta}K$ region due to rougher fracture surface caused by formation of deformation twins during fatigue at the crack tip region.

  • PDF

Microstructure and Mechanical Properties of High Mn TWIP Steels (고 Mn계 TWIP 강의 미세조직과 기계적 성질)

  • Jung, J.K.;Lee, O.Y.;Park, Y.K.;Kim, D.E.;Jin, K.G.;Kim, S.K.;Song, K.H.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.627-633
    • /
    • 2008
  • The austenitic Fe-Mn alloys have received considerable attention as a possible candidate for the automotive structural materials due to their high strength and high formability with high elongation. This research investigates the effect of alloying elements on the phase transformation, deformation behavior and mechanical properties in high Mn steels for the development of a high strength high ductility steel. The mechanical stability of austenitic phases is very important for high ductility and it depends largely on the composition of carbon, manganese and aluminum. The dominant deformation mode shifts from TRIP to TWIP mode as the amount of C, Mn and Al is increased. Especially, even a small amount of Al addition facilitates significantly TWIP deformation due to the increase of stacking fault energy in Fe-Mn alloys, this leads to increase the ductility and also decrease the crack sensitivity.

Effects of Carbon and Sulfur Content on Mechanical Properties of High Purity Steel (고순도강의 기계적 성질에 미치는 탄소 및 황 함량의 영향)

  • Yoon, Jeong-Bong;Kim, Sung-Il;Kim, In-Bea
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.6
    • /
    • pp.331-337
    • /
    • 2009
  • To lower the annealing temperature and the deviation of the mechanical properties of bake hardening steels, high purity steels were investigated. The steels were characterized by treating at low recrystallization temperature. It was confirmed that the strengthening originated from the solid solution of carbon and the ferrite grain refinement by fine MnS precipitates as carbon and sulfur contents increased in high purity steels. However, it was observed that there was no more increase of strength in steels containing over 40 ppm of carbon. It was considered that the excess carbon formed either the carbon cluster or the low temperature unstable carbides which had the negligible effect on the strengthening because they were reported to be highly coherent with the matrix. The carbon cluster and unstable carbides could be transformed to the stable cementite during bake hardening treatment. MnS was not observed in the high purity steel containing 5 ppm S, resulting in very coarse recrystallized grains and good ductility. As sulfur content increased, the recrystallized grain size decreased due to the formation of the fine MnS precipitates.

Fully Cu-based Gate and Source/Drain Interconnections for Ultrahigh-Definition LCDs

  • Kugimiya, Toshihiro;Goto, Hiroshi;Hino, Aya;Nakai, Junichi;Yoneda, Yoichiro;Kusumoto, Eisuke
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1193-1196
    • /
    • 2009
  • Low resistivity interconnection and high-mobility channel are required to realize ultrahigh-definition LCDs such as 4k ${\times}$ 2k TVs. We evaluated fully Cu-based gate and Source/Drain interconnections, consisting of stacked pure-Cu/Cu-Mn layers for TFT-LCDs, and found the underlying Cu-Mn alloy film has superior adhesion to glass substrates and CVD-SiOx films. It was also confirmed that wet etching of the Cu/Cu-Mn films without residues and low contact resistance with both channel IGZO and pixel ITO films can be obtained. It is thus considered that the stacked Cu/Cu-Mn structure is one of candidates to replacing conventionally pure-Cu/refractory metal.

  • PDF

Hydrogen Embrittlement Properties of Austenitic Fe-30Mn-0.2C(-1.5Al) High-Manganese Steels for Cryogenic Applications (극저온용 오스테나이트계 Fe-30Mn-0.2C(-1.5Al) 고망간강의 수소 취화 특성)

  • Lee, Sang-In;Lee, Ji-Min;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.283-289
    • /
    • 2018
  • This present study deals with the hydrogen embrittlement properties of austenitic Fe-30Mn-0.2C(-1.5Al) high-manganese steels for cryogenic applications. They were electrochemically charged with hydrogen and then subjected to tensile tests for evaluating hydrogen embrittlement behavior. Tensile test results showed that after hydrogen charging the tensile strength and elongation of the Al-free steel were more remarkably decreased with increasing current density when compared to the Al-added steel. After hydrogen charging of the Al-added steel, it was found that the measured hydrogen content was small and silver particles were relatively less decorated. Therefore, the Al-added steel has a superior hydrogen embrittlement resistance to the Al-free steel because the addition of Al suppresses the injection of hydrogen during electrochemical hydrogen charging.