• Title/Summary/Keyword: High-Ductility

Search Result 969, Processing Time 0.024 seconds

An Experimental Study on Behavior of High-Strength R.C Columns According to the Configuration of Ties (띠철근 배근형태에 따른 고강도 철근콘크리트 기둥의 거동에 관한 실험적 연구)

  • 이영인;곽노현;이영호;은희창;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.565-570
    • /
    • 1998
  • An objective of this study is to experimentally investigate the strength and ductility of reinforced concrete columns under uniaxial load and several test variables. To do this, we have conducted tests on twelve 20$\times$20$\times$60cm specimens with 8 and 12 longitudinal steel bars subjected to monotonic uniaxial compression. The main variables considered in this test are the configuration of ties, the strength of concrete, The results indicate that the strength and the ductility of reinforced concrete columns have been influenced on the configuration of ties, the strength of concrete.

  • PDF

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Automated design of optimum longitudinal reinforcement for flexural and axial loading

  • Tomas, Antonio;Alarcon, Antonio
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.149-171
    • /
    • 2012
  • The problem of a concrete cross section under flexural and axial loading is indeterminate due to the existence of more unknowns than equations. Among the infinite solutions, it is possible to find the optimum, which is that of minimum reinforcement that satisfies certain design constraints (section ductility, minimum reinforcement area, etc.). This article proposes the automation of the optimum reinforcement calculation under any combination of flexural and axial loading. The procedure has been implemented in a program code that is attached in the Appendix. Conventional-strength or high-strength concrete may be chosen, minimum reinforcement area may be considered (it being possible to choose between the standards ACI 318 or Eurocode 2), and the neutral axis depth may be constrained in order to guarantee a certain sectional ductility. Some numerical examples are presented, drawing comparisons between the results obtained by ACI 318, EC 2 and the conventional method.

Flexural performance of FRP-reinforced concrete encased steel composite beams

  • Kara, Ilker Fatih
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.775-793
    • /
    • 2016
  • This paper presents a numerical method for estimating the curvature, deflection and moment capacity of FRP-reinforced concrete encased steel composite beams (FRP-RCS). A sectional analysis is first carried out to predict the moment-curvature relationship from which beam deflection and moment capacity are then calculated. Comparisons between theoretical and experimental results of tests conducted elsewhere show that the proposed numerical technique can accurately predict moment capacity and deflection of FRP-RCS composite beam. The numerical results also indicated that beam ductility and stiffness are improved when encased steel is added to FRP reinforced concrete beams. ACI, ISIS and Bischoff models for deflection prediction compared well at low load, however, significantly underestimated the experimental results for high load levels.

Analysis on the Behavior of Modified DDC, Precast Beam-Column Concrete Connectors for Apartments (공동주택을 위한 건식 프리캐스트 보-기둥 변형 DDC 접합부의 거동분석)

  • Song, Hyung-Soo;Lee, Bo-Kyung;Yu, Sung-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.9-12
    • /
    • 2005
  • Four precast concrete beam-column connectors for the apartment buildings were considered to develop a modified model which was adapt to domestic construction conditions from the DDC(Dywidag Ductile Connectors) of Germany. Special H-shape steel were used to decrease the width of column and beams for the construction of external frames of apartments. It was found that the DDC had high joint strength and ductility, however failed in x-shape crackings in the columns. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The test result of modified one with grouting were compared to that of the one without grouting within the duct. The one with grouting showed higher strength and ductility in failure than that without grouting.

  • PDF

Analysis on the Behavior of Post-tensioned Precast Beam-Column Concrete Connectors (포스트텐션 프리캐스트 보-기둥 건식 콘크리트 접합부의 거동분석)

  • Song Hyung Soo;Ryu Jung Wook;Kim Yun Soo;Yu Sung Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.41-44
    • /
    • 2005
  • Three precast concrete beam-column connectors for the high-rise office buildings were considered to investigate the prestressing effects of the DDC(Dywidag Ductile Connectors) of Germany and of the modified DDC. The specimens of DDC, DDC with post-tensioning and modified DDC with post-tensioning were constructed and tested to verify the safety. The DDC with and without post-tensioning showed reliable joint strength and ductility but failed in critical x-shape crackings at the column. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The use of prestressing did not helpful significantly to increase the strength and ductility of connectors but helpful only to develop self-centering behavior for stability.

  • PDF

Hysteretic Behavior of Reinforced Concrete Columns Confined By Square Steel Tubes. (정방향 STRC 기둥의 자기이력현상 거동)

  • Wang, Xiaoyong;Zhang, Sumei;Lee, Han-Seaung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.430-433
    • /
    • 2006
  • The reinforced concrete column confined by square steel tubes(RCST) is a reinforced column (RC) confined by thin steel tubes which cover over the full length of the column but terminates 15mm from the column's ends. The steel tube is in uniaxial tension stress state and won't buckle when the column sustains axial load. This will highly increase the bearing capacity and ductility of the columns. The hysteretic behavior of four square RCST columns and one square RC column were experimentally studied under constant axial load and lateral cyclic load. The wide-to-thickness (D/t) ratio of RCST columns employed in this research is 75. The main variables of the experiment were axial load ratio and compressive strength of the concrete. Based on the findings in this research, RCST columns exhibits high lateral strength, ductility, and energy dissipation ability.

  • PDF

Development of New Titanium Alloys for Castings (주조용 티타늄 신합금 개발)

  • Kim, Seung-Eon;Jeong, Hui-Won;Hyeon, Yong-Taek;Kim, Seong-Jun;Lee, Yong-Tae
    • 연구논문집
    • /
    • s.29
    • /
    • pp.163-171
    • /
    • 1999
  • A new titanium alloy system. Ti-xFe-ySi (x,y=0-4 wt%). was designed and characterized with the point at low cost and high strength for casting applications. Fe improved room and elevated temperature mechanical properties owing to solid solution hardening and beta phase stabilization. Si yielded titanium silicides and Si addition over 1 wt% resulted in poor ductility due to coarse silicide chains at prior beta boundaries. The optimum composition was found to be Ti-4Fe-(0.5-1)Si in the viewpoint of tensile strength and ductility which are comparable to the Ti-6Al-4V. The metal-mould reaction was also examined for Ti-xFe and Ti-xSi binary alloy system. The thickness of surface reaction layer w as not affected significantly with Fe content, while it was decreased with Si content. In the Ti-4Si alloy, no reaction layer was found. The depth of surface hardening layer was about $200\mum$ regardless of the mould materials.

  • PDF

Ductility enhancement of reinforced concrete thin walls

  • Kim, Jang Hoon
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.111-123
    • /
    • 2005
  • The ductility of reinforced concrete bearing walls subjected to high axial loading and moment can be enhanced by improving the deformability of the compression zone or by reducing the neutral axis depth. The current state-of-the-art procedure evaluating the confinement effect prompts a consideration of the spaces between the transverse and longitudinal reinforcing bars, and a provision of tie bars. At the same time, consideration must also be given to the thickness of the walls. However, such considerations indicate that the confinement effect cannot be expected with the current practice of detailing wall ends in Korea. As an alternative, a comprehensive method for dimensioning boundary elements is proposed so that the entire section of a boundary element can stay within the compression zone when the full flexural strength of the wall is developed. In this comprehensive method, the once predominant code approach for determining the compression zone has been advanced by considering the rectangular stress block parameters varying with the extreme compression fiber strain. Moreover, the size of boundary elements can also be determined in relation to the architectural requirement.

Polymer concrete filled circular steel beams subjected to pure bending

  • Oyawa, Walter O.;Sugiura, Kunitomo;Watanabe, Eiichi
    • Steel and Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.265-280
    • /
    • 2004
  • In view of the mounting cost of rehabilitating deteriorating infrastructure, further compounded by intensified environmental concerns, it is now obvious that the evolvement and application of advanced composite structural materials to complement conventional construction materials is a necessity for sustainable construction. This study seeks alternative fill materials (polymer-based) to the much-limited cement concrete used in concrete-filled steel tubular structures. Polymers have been successfully used in other industries and are known to be much lighter, possess high tensile strength, durable and resistant to aggressive environments. Findings of this study relating to elasto-plastic characteristics of polymer concrete filled steel composite beams subjected to uniform bending highlight the enormous increase in stiffness, strength and ductility of the composite beams, over the empty steel tube. Moreover, polymer based materials were noted to present a wide array of properties that could be tailored to meet specific design requirements e.g., ductility based design or strength based design. Analytical formulations for design are also considered.