• Title/Summary/Keyword: High-Ductility

Search Result 969, Processing Time 0.027 seconds

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

Ductility and Seismic Performance of Spirally Reinforced Bridge Columns (나선철근 원형교각의 연성 및 내진성능)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.356-363
    • /
    • 2000
  • The objectives of this study are to investigate seismic performance of spirally reinforced bridge columns and to provide test result for developing improved seismic design criteria. Quasi-static test was conducted for 12 columns of which variables were transverse reinforcement ratio and spacing, longitudinal reinforcement ratio, and axial load level. Sufficient seismic performance was observed from the test for the columns with greater confinement steel amount than the requirement of the Korean Bridge Design Specification. The columns with 0.84% of the confinement steel requirement provided adequate performance under less than 0.2 of axial load level, but showed lower ductility under 0.3 of axial load level. The current provision for the region of confinement steel distribution may be non-conservative under high axial load level, therefore a modified provision is proposed.

  • PDF

Torsional Behavior of Reinforced Concrete Multi-Story Building under Seismic Loading

  • Hong, Sung-Gul;Moritz, Alex P.;Kim, NamHee
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.314-321
    • /
    • 2000
  • Excessive torsional behavior of asymmetric building structures is observed to be the main cause of the poor seismic performance. Concepts of current design provisions for torsion are based on the assumption that the strength of the lateral load resisting elements can be adjusted without changing their stiffness. This paper investigates inelastic torsional effects of multi-story high rise residential building in Korea on increase of strength demand and ductility of members using some methods published in literature. The methods analyze the reduction of strength and member ductility resulting from torsional mechanisms. This study shows that use of these concepts control inelastic torsion during preliminary seismic design of multi-story building of irregular plans.

  • PDF

The Study on the Structural Behavior of Concrete-filled Composite Piers (콘크리트충전 강합성 교각의 구조적 거동에 관한 연구)

  • 김유경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • In this paper, It is presented that concrete-filled composite piers have large energy-absorption capacity and high strength and stiffness on account of mutual confinement between the steel plate and filled-in concrete. Concrete-filled composite columns were tested to failure under axial compression and cyclic lateral loading. Displacement ductility index obtained by using the load-displacement relation has been increased with the increment of filled-in concrete length, while it has been decreased according to the incrementation of width-thickness ratio, slenderness ratio and the number of loading cycles. Structural behavior and ductility index estimated for the seismic design showed that composite piers could be used as a very efficient earthquake-resistant structural member. The response modification factor could be re-evaluated for concrete-filled composite piers.

  • PDF

비 격리교량의 연성도를 목표로 하는 지진격리교량의 응답수정계수

  • 고현무
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.432-439
    • /
    • 2000
  • According as ground acceleration becomes to exceed gravity acceleration recently, design is impossible or economical efficiency is poor in existing seismic design method. So increase of seismic isolated bridges is currently in progress. However, because base isolation design method is developed in high seismic regions. it may not be compatible in Korea. Therefore, this research has objective to evaluate ductility of pier and response modification factor according to the ductility of pier in seismic isolated bridges and to adapt to seismic characteristics in Korea. For this purpose, nonlinear analysis is accomplished with so many time histories derived from spectral density function compatible with response spectrum described in the design code and base isolation system modeled linear system, bi-linear system, and friction system. Through application of the proposed method, we had result that it may be compatible that response modification factor for the seismic isolated bridges is smaller than half of that for the conventional bridges when natural period of structures exceeds proper level.

  • PDF

Effect of Deformation Temperature on Microstructure and Hardness of Plain Carbon Steels (변형 온도에 따른 탄소강의 미세조직 및 경도 변화)

  • Lee, T.;Park, S.H.;Lee, D.L.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.362-365
    • /
    • 2009
  • Microstructural evolution and the mechanical properties of various carbon steels were investigated with the variation deformation temperature to explore the optimum microstructure with excellent combination of strength and ductility. For this purpose, three carbon steels containing different carbon contents were deformed using Gleeble 3500 at temperatures including austenitic, austenitic/ferritic, austenitic/cementitic, ferritic/cementitic regions. The results showed that in the medium and high carbon steels, cementite particles became finer with decreasing deformation temperature resulting higher hardness but lower ductility. Further effort is needed to find out optimum microstructures with enhanced mechanical properties.

  • PDF

An Experimental Study on the Structural Behavior of Double-Angle Shear Connections in Steel Structures (강구조 복앵글 전단 접합부의 구조적 거동에 관한 실험적 연구)

  • Lee, Do-Hyung;Kim, Seok-Jung
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.305-312
    • /
    • 1997
  • Shear connections in steel structures should satisfy dual criteria of shear strength and rotational flexibility and ductility. The connection should be strong enough to transfer the shear reaction of the beam, and should have sufficient rotational flexibility and ductility to rotate easily and supply the end rotation demand of the beam. This paper is concerned with the behavior of double-angle shear connections where the parameters are numbers of high strength bolts, bolt pitch, the length of angle leg, and connection method. An experimental investigation of shear connection was conducted by testing 12 beam-to-column joint specimens. Based on experimental and analytical study, the failure modes are developed and proposed design formulas.

  • PDF

The Effect of The Flexural Strength Ratio on Beam-Column Joint with High and Low Strength Concrete (고강도와 보통 강도 콘크리트를 사용한 보-기둥 접합부의 휨강성화에 따른 이력거동)

  • Shin, S.W.;An, J.M.;Moon, J.I.;Kim, D.K.;Lee, K.S.;Park, H.M.;Lee, S.H.;Oh, J.G.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.185-190
    • /
    • 1992
  • ACI318-89 Recommended that when the specified compressive strength of concrete in a column is greater than1.4 times that specified for a floor system, top surface of the column concrete shall extend 2ft(600mm)into the slab from the face of column to avoid unexpected brittle failure. The major variables are extension distance, flexural strength ratio(Mr), and shear reinforcement ratio(Vs). Test results are as follows ; (1) The failure modes of specimens under cyclic loading were concentrated at critical region from beam-column joint face. (2) Ductility index($\mu$f) were increased with increasing of shear confinement ratio and flexural strength ratio. (3)The specimens with 2ft extension distance showed more ductility than the specimens with 1ft extension distance.

  • PDF