• Title/Summary/Keyword: High voltage transformer

Search Result 854, Processing Time 0.026 seconds

Survey of Optical Current Sensor and Optical Voltage Sensor for Electric Power Systems (전력용 광 전류, 전압 센서 연구 동향 조사)

  • Kim, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.270-273
    • /
    • 2001
  • In this paper, some of optical current transformers and optical potential transformers for extra high voltage system are introduced. The optical current transformer and optical potential transformer will be adopted in the near future, because of increasing demands of high accuracy and good reliability of current transformer and potential transformer. The application cases of optical current transformers and optical potential transformers are also introduced.

  • PDF

A survey of the application cases of optical current and voltage sensors (광 전류.전압 센서의 적용사례 조사 연구)

  • Kim, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.215-218
    • /
    • 2002
  • In this paper some of optical current transformers and optical potential transformers for extra high voltage system are introduced. The optical current transformer and optical potential transformer will be adopted in the near future, because of increasing demands of high accuracy and good reliability of current transformer and potential transformer. The application cases of optical current transformers and optical potential transformers are also introduced.

  • PDF

Characteristics of Step-Down Transformer in PZT Piezoelectric Ceramics (PZT계 압전 세라믹 변압기의 감압특성)

  • 김오수;이준형;손정호;남효덕;조상희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.11
    • /
    • pp.885-891
    • /
    • 2001
  • Ring/dot-type step-down piezoelectric transformer was manufactured by using Pb[(Mn$\sub$1/3/Sb$\sub$2/3)$\sub$0.05/Zr$\sub$0.475/Ti$\sub$0.475/]O$_3$ ceramics, which have excellent high-power piezoelectric properties. The characteristics of step-down piezoelectric transformer as a function of load resistance at output terminal was examined. Voltage gain was greatly dependent on drive frequency and load resistance, and showed maximum voltage gain at the resonance frequency. The output voltage was linearly increased as the input voltage increased. Voltage gain of the step-down piezoelectric transformer with respect to input voltage was very stable when the load resistance was in the range of 50-500 $\Omega$ .

  • PDF

High Voltage Resonant DC-DC Converter Design for X-Ray Imaging (X-Ray 진찰용 고전압 공진형 DC-DC 컨버터 설계)

  • Baek, Jong-Mu;Joo, Hae-Jong;Cho, Moon-Taek;Lee, Chung-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • In this paper, including the X-ray high voltage resonant inverter generators and high frequency high voltage transformer operating systems is proposed. X-ray generator removes the noise and was smaller, 50[kHz] to work more with the driving frequencies, and that occurred when the normal power supply available due to noise, survey the conditions and solve the problems of the poor was a problem. In addition, X-ray tube voltage, frequency controllers and tube current controller filament heating voltage transformer for high frequency transformer design and manufacture of doing X-ray devices were to become more efficient operation.

A High-Gain Boost Converter using Voltage-Stacking Cell (Voltage-Stacking Cell을 이용한 고이득 부스트 컨버터)

  • Lee, Jun-Young;Hwang, Sun-Nam
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.982-984
    • /
    • 2008
  • This paper suggests anon-isolated high-gain boost converter using voltage-stacking cell. The voltage gain can be increased by adjusting number of voltage-stacking cells and transformer turns-ratio. Test results with 1kW prototype converter show that the voltage gain is three or four times higher than conventional boost converter at unity transformer turns-ratio and about 90% of efficiency is recorded under full load condition.

A New method for the Calculation of Leakage Reactance in Power Transformers

  • Dawood, Kamran;Alboyaci, Bora;Cinar, Mehmet Aytac;Sonmez, Olus
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1883-1890
    • /
    • 2017
  • Transformers are one of the most precious elements of the electric power system. Stability and reliability of the electric power network mainly depend on the working of the transformer. Leakage reactance of the transformer is one of the important factors and accurate calculation of the leakage reactance is necessary for the transformer designers and electric distributors. Leakage reactance of the transformer depends on the geometry of the transformer. There are many different methods for the calculations of the leakage reactance however mostly are usable when the axial heights of the high voltage and low voltage windings are equal. When the axial heights of high voltage and low voltage windings are asymmetric most of the analytical methods are not reliable. In this study, a new analytical method is introduced for the calculation of the leakage reactance. Fourteen different transformers are investigated in this study and four of them are presented in this paper. The results of the new analytical method are compared with the experimental results. Other analytical and numerical methods are also compared with this new method. Results show that this method is more reliable and accurate as compared to the other analytical methods. The maximum relative error between short-circuit test and proposed method for these fourteen transformers was less than 2.8%.

Unit Process Scheduling System Development and Calculation and Control Method of Planned Leadtime Using Multiple Linear Regression under Make to Order Manufacturing System in Transformer Winding Process (변압기 권선공정에서의 수주 제작품의 단위공정 일정관리 시스템 개발과 다중회귀분석을 이용한 계획 리드타임 산출 및 관리 방안)

  • Kang, Dae-Wan;Kang, Chang-Wook;Kang, Hae-Woon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.3
    • /
    • pp.117-124
    • /
    • 2008
  • Ultra-high voltage transformer industry has characteristic of small quantity batch production system by other order processing unlike general mass production systems. In this industry, observance of time deadline is very important in market competitive power security and company continued existence. The transformer winding is a process that rolls a coil is coated with an electric insulation material in order to generate the required voltage using the voltage fluctuation. The winding process is very important production process in the extra-high voltage transformer manufacturing industry because winding process is core process that occupy weight about half of whole process and is process that decide current ratio of transformer. This paper proposes a statistical calculation and control method of planned leadtime on the basis of real data and informations for the A company in transformer winding process. Moreover, we develop unit process scheduling system.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드변압기의 덕트에 따른 열해석 특성 연구)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1135-1138
    • /
    • 2003
  • The transformer is major equipment in power receiving and substation facilities. Necessary conditions required for the transformer are compactness, lightness, high reliability, economic advantages, and easy maintenance. The pole-mount transformer installed in distribution system is acting direct role in supply of electric power and it is electric power device should drive for long term. Most of modem transformer are oil-filled transformer and accident is happening considerable. The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. One body molding transformer needs some cooling method because heat radiation between each winding is difficult. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

  • PDF

A study on design method for high frequency transformer with high inulation voltage (높은 절연전압을 갖는 고주파 변압기 설계 방법에 관한 연구)

  • Kang, Kyoung Pil;Kim, Ho-Sung;Cho, Jintae;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.27-28
    • /
    • 2017
  • In this paper, design method for a high frequency transformer with high insulation is presented. The insulation performance of the high frequency transformer is determined by the distance between primary and secondary windings, and the characteristics of dielectric material. For the voltage strength safty, a high frequency transformer model is designed. By using computer simulation, the transformer model is evaluated.

  • PDF

Compensation of the secondary voltage of a coupling capacitor voltage transformer in the time-domain (히스테리시스 특성을 고려한 CCVT 2차 전압 보상 방법)

  • Kang, Yong-Cheol;Zheng, Tai-Ying;Kim, Yeon-Hee;Jang, Sung-Il;Kim, Yong-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.266-267
    • /
    • 2006
  • A coupling capacitor voltage transformer (CCVT) is used in extra high voltage and ultra high voltage transmission systems to obtain the standard low voltage signal for protection and measurement. To obtain the high accuracy at the power system frequency, a tuning reactor is connected between a capacitor and a voltage transformer (VT). Thus, no distortion of the secondary voltage is generated when no fault occurs. However, when a fault occurs, the secondary voltage of the CCVT has some errors due to the transient components resulting from the fault. This paper proposes an algorithm for compensating the secondary voltage of the CCVT in the time domain. With the values of the secondary voltage of the CCVT, the secondary and the primary currents are obtained; then the voltage across the capacitor and the tuning reactoris calculated and then added to the measured secondary voltage. The proposed algorithm includes the effect of the non-linear characteristic of the VT and the influence of the ferro-resonance suppression circuit. Test results indicate that the algorithm can successfully compensate the distorted secondary voltage of the CCVT irrespective of the fault distance, the fault inception angle and the fault impedance.

  • PDF