• Title/Summary/Keyword: High voltage motor

Search Result 799, Processing Time 0.033 seconds

Development of Central Monitoring System for Insulation Diagnosis of High-Voltage Generator/Motor Stator Windings (고압 회전기 고정자 권선의 절연진단을 위한 중앙 집중 감시 시스템 개발)

  • Shin, Byoung-Chol;Yoon, Dae-Hee;Hwang, Don-Ha;Kim, Yong-Joo;Ju, Young-Ho;Kim, Jeong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1906-1908
    • /
    • 2000
  • The central monitoring system with on-line diagnosis of high-voltage generator/motor stator insulation is developed. The system is capable of remote diagnosis and monitoring partial discharges of high-voltage generator/motor stator insulation. GOMS(Generator On-line Monitoring System) with maximum of 9 input channels can measure and analyze the status of high-voltage motor stator insulation by on-line. The measured and analysis data are brought to the central monitoring system via modem to build database. The central monitoring system can diagnose and monitor the insulation status of several high-voltage generator/motor at any time. The insulation status of those machines can be enhanced by the database on partial discharges.

  • PDF

Oeterioration Diagnosis of Stator Windings in High Voltage Induction Motor Using Partial Discharge Characteristics (부분방전 특성을 이용한 고압 유도전동기 고정자 권선 열화진단)

  • 김덕근;정영일;이은석;임용배;김종서
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.481-484
    • /
    • 2001
  • High voltage induction motors are widely used in industrial factory because have many benefits. But the insulated materials of induction motor are aged by using time, electrical, thermal, circumstantial stresses and so on. Motor failures are occurred by these deterioration phenomena and give rise economic problems to user. In many motor failures, insulated material problems of stator winding happen frequently and occupy high percentages in the failure source. In this paper, the testing specimen(motorette) is manufactured by modeling of stator winding of high voltage induction motor and accelerating test is carried out. Partial discharge signals detected by RF sensor are used to analyze deterioration condition of stator windings. According to aging time, the 3D ( ${\Phi}$-Q-N) distribution and skewness of partial discharge signals are changed.

  • PDF

The Sugge Voltage restraint of induction motor using low-loss snubber circuit (저손실 스너버 회로를 이용한 유도전동기의 서지전압 억제)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Yong;Kim, Ju-Yong;Shu, Ki-Young;Kwon, Soon-Kurl
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.473-477
    • /
    • 2007
  • The development of advanced Insulated Gate Bipolar Transistor(IGBT)has enabled high-frequency switching operation and has improved the performance of PWM inverters for motor drive. However, the high rate of dv/dt of IGBT has adverse effects on motor insulation stress. In many motor drive applications, the inverter and motor are separated and it requires long motor feds. The long cable contributes high frequency ringing at the motor terminal and it results in hight surge voltage which stresses the motor insulation. The inverter output filter and RDC snubber are conventional method which can reduce the surge voltage. In this paper, we propose the new low loss snubber to reduce the motor terminal surge voltage. The snubber consists of the series connection of charging/discharging capacitor and the voltage-clamped capacitor. At IGBT turn-off, the snubber starts to operate when the IGBT voltage reaches the voltage-clamped level. Since dv/dt is decreased by snubber operating, the peak level of the surge voltage can be reduced. Also the snubber operates at the IGBT voltage above the voltage-clamped level, the snubber loss is largely reduced comparing with RDC snubber. The proposed snubber enables to reduce the motor terminal surge voltage with low loss.

  • PDF

Analysis on the Effect of LCR Filter to Mitigate Transient Overvoltage on the High Voltage Induction Motor Fed by Multi Level Inverter (멀티레벨 인버터 구동 고압유도전동기에시 발생하는 과도과전압 저감을 위한 LCR필터의 효과분석)

  • Kim, Jae-Chul;Kwon, Young-Mok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, we analyze on the effect of LCR filter to mitigate transient overvoltage on the high voltage induction motor fed by H-bridge cascaded 7-level inverter. The switching surge voltage that it was occurred in inverter appears transient overvoltage at the motor input terminal. the transient overvoltage becomes the major cause to occur the insulation failure by serious voltage stress in the stator winding of high voltage induction motor. The effect of transient overvoltage appears more serious in high voltage induction motor than low voltage induction motor. We selected LCR filter for reduction of the transient overvoltage. Consequently, we demonstrated that the LCR filter connected to the invertor output terminals greatly reduces the transient voltage stress and ringing. The results of simulation show the suppression of transient overvoltage at the motor end of a long cable. using EMTP

The Switching Surge Reduction Device of High Voltage motor (고압전동기(高壓電動機) SWITCHING SURGE 저감방안(低減方案))

  • Kim, Jong-Kyeom;Lee, Eun-Woong;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.86-89
    • /
    • 1991
  • In recent years, Vacuum Circuit Breaker(VCB) has been widely used to enhance the confidence and at the same time to ease maintenance of waterworks requipment as the power supply breaker of high voltage motor. When making and breaking the sources as VCB the powerful surge voltage, repetitive reignition phenomenon resulted from exceeding inter-pole endurance voltage of CB, has occured. It has transmitted to the winding of motor stator through the cable, and this surge voltage is repeated over and over again before finishing making and breaking action of CB according to cumulation of repetitive reignition surge, motor has become burned in the end. This paper describes surge voltage occuring in making and breaking of VCB as circuit parameters by transient phenonenon and examines closely the variance of peak values, wavefront-length, wavetail-length, when changing inductance and capacitance of a cable. Finally we will expect to protect motor winding breakdown from surge voltage through parallel connection of suitable-size in the motor.

  • PDF

Suppression of Shaft Voltage by Rotor and Magnet Shape Design of IPM-Type High Voltage Motor

  • Kim, Kyung-Tae;Cha, Sang-Hoon;Hur, Jin;Shim, Jae-Sun;Kim, Byeong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.938-944
    • /
    • 2013
  • In this paper, we propose a method for suppressing shaft voltage by modifying the shape of the rotor and the permanent magnets in interior permanent magnet-type-high-voltage motors. Shaft voltage, which is induced by parasitic components and the leakage flux in motor-driven systems, adversely affects their bearings. In order to minimize shaft voltage, we designed a magnet rearrangement and rotor re-structuring of the motor. The shaft voltage suppression effect of the designed model was confirmed experimentally and by comparative finite element analysis.

Analysis of Voltage Stress in Stator Windings of IGBT PWM Inverter-Fed Induction Motor Systems

  • Hwang Don-Ha;Lee Ki-Chang;Jeon Jeong-Woo;Kim Yong-Joo;Lee In-Woo;Kim Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.43-49
    • /
    • 2005
  • The high rate of voltage rise (dv/dt) in motor terminals caused by high-frequency switching and impedance mismatches between inverter and motor are known as the primary causes of irregular voltage distributions and insulation breakdowns on stator windings in IGBT PWM inverter-driven induction motors. In this paper, voltage distributions in the stator windings of an induction motor driven by an IGBT PWM inverter are studied. To analyze the irregular voltages of stator windings, high frequency parameters are derived from the finite element (FE) analysis of stator slots. An equivalent circuit composed of distributed capacitances, inductance, and resistance is derived from these parameters. This equivalent circuit is then used for simulation in order to predict the voltage distributions among the turns and coils. The effects of various rising times in motor terminal voltages and cable lengths on the stator voltage distribution are also presented. For a comparison with simulations, an induction motor with taps in the stator turns was made and driven by a variable-rising time switching surge generator. The test results are shown.

A Measurement of Switching Surge Voltage Using Inverter devices (인버터의 스위칭 서지전압 측정)

  • Kim, Jong-Gyeum;Jeong, Jong-Ho;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.1
    • /
    • pp.14-21
    • /
    • 2004
  • Most adjustable-speed drives (ASDs) designed to operate low voltage induction motors incorporate voltage-source inverters (VSIs), which create motor voltages at high switching frequencies. The motor leads used to connect an ASD to a motor can behave like transmission lines for voltage pulses, which can be reflected at the motor terminals. The resulting oscillatory transient, known as the long-lead effect, can stress and consequently degrade the stator insulation system of a motor. This paper describes the results of tests to 1) determine the correlation between peak motor voltage and the length of motor leads and 2) determine the correlation between peak motor voltage and the switching frequency of the ASD Insulation failures like this usually are caused by voltage surges. Voltage surges are often the result of switching power circuits, lightning strikes, capacitor discharges and solid-state power devices.

A Measurement of Switching Surge Voltage using Voltage Type Inverter (전압형 인버터 스위칭 서지전압 측정)

  • Kim, Jong-Gyeum;Lee, Eun-Woong;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.16-21
    • /
    • 2002
  • Most adjustable-speed drives(ASDs) designed to operate 220[V] induction motors incorporate voltage-source inverters (VSIs), which create motor voltages at high switching frequencies. The motor leads used to connect an ASD to a motor can behave like transmission lines for voltage pulses, which can be amplified (reflected) at the motor terminals. The resulting oscillatory transient, known as the long-lead effect, can stress and consequently degrade the statorinsulation system of a motor. This Brief describes the results of tests to 1) determine the correlation between peak motor voltage and the length of motor leads and 2) determine the correlation between peak motor voltage and the switching frequency of the ASD Insulation failures like this usually are caused by voltage surges. Voltage surges are often the result of switching power circuits, lightning strikes, capacitor discharges and solid-state power devices.

  • PDF

Characteristic Analysis of BLDC Motor for Vehicle Compressor Based on High Voltage (고전압 기반의 자동차 압축기용 BLDC 모터의 특성 해석)

  • Kim, Byeong-Woo;Cho, Hyun-Dock;Lee, Do-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-51
    • /
    • 2008
  • The performance design and analysis of an electric motor for vehicles is very complicated due to the variety of parameters. This paper presents the design of the BLDC motor for electric air compressor in high voltage(42V) system and compares with the characteristics of IPM, SPM type BLDC motor. Futher, optimal design for the electric motor has been carried out using Equivalent Magnetic Circuit and FEM Modelling. By analyzing the design results, it is found that design parameters for BLDC motor provided an useful tool for vehicles motor design.