• 제목/요약/키워드: High voltage direct current(HVDC)

검색결과 139건 처리시간 0.025초

불평형 전압 발생 시 유효전력 조절을 통한 전압형 HVDC의 DC전압 제어 방안 (Control Scheme Using Active Power Regulation for DC Voltage of VSC HVDC Under Unbalanced Voltage)

  • 박상인;허재선;문원식;김두희;김재철
    • 전기학회논문지
    • /
    • 제64권2호
    • /
    • pp.232-239
    • /
    • 2015
  • Faced with unbalanced grid operation mode, the high voltage direct current (HVDC) based on voltage source converter (VSC) can be properly controlled by a dual current control scheme. For the modular multilevel converter (MMC) controlling the AC side current is able to limit the arm current which flows along the IGBT of submodule (SM) to rated current. However the limitation of the arm current results in leaving the control range of active power at MMC confined to below the rated capacity. As a result, limiting the arm current causes the problem that the DC side voltage of the HVDC can not be controlled to the reference value since MMC HVDC adjusts the DC side voltage through the active power. In this paper, we propose the algorithm adjusting the active powers of both MMCs to resolve the problem. The back-to-back MMC HVDC applying the algorithm is modeled by PSCAD/EMTDC to verify the algorithm.

Design of Direct-Current Fuzzy Controller for Mitigating Commutation Failure in HVDC System

  • Gao, Benfeng;Yuan, Kewei;Dong, Peiyi;Luo, Chao;Zhao, Shuqiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1450-1458
    • /
    • 2018
  • Commutation failures can deteriorate the availability of high-voltage direct current (HVDC) links and may lead to outage of the HVDC system. Most commutation failures are caused by voltage reduction due to ac system faults on inverter side. The commutation failure process can be divided into two stages. The first stage, from the occurrence to the clearing of faults, is called 'Deterioration Stage'. The second stage, from the faults clearing to restoring the power system stability, is called 'Recovery Stage'. Based on the analysis of the commutation failure process, this paper proposes a direct-current fuzzy controller including prevention and recovery controller. The prevention controller reduces the direct current to prevent Commutation failures in the 'Deterioration Stage' according to the variation of ac voltage. The recovery controller magnifies the direct current to speed up the recovery of power system in the 'Recovery Stage', based on the recovery of direct voltage. The validity of this proposed fuzzy controller is further proved by simulation with CIGRE HVDC benchmark model in PSCAD/EMTDC. The results show the commutation failures can be mitigated by the proposed direct-current fuzzy controller.

Planning of HVDC System Applied to Korea Electric Power Grid

  • Choi, DongHee;Lee, Soo Hyoung;Son, Gum Tae;Park, Jung-Wook;Baek, Seung-Mook
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.105-113
    • /
    • 2018
  • This paper proposes pre-analysis on planning of high-voltage direct current (HVDC) transmission system applied to Korea electric power grid. HVDC transmission system for interface lines has been considered as alternative solution for high-voltage AC transmission line in South Korea since constructing new high-voltage AC transmission lines is challenging due to political, environmental and social acceptance problems. However, the installation of HVDC transmission system as interface line in AC grid must be examined carefully. Thus, this paper suggests three scenarios to examine the influences of the installation of HVDC transmission system in AC grid. The power flow and contingency analyses are carried out for the proposed scenarios. Power reserves in metro area are also evaluated. And then the transient stability analysis focusing on special protection scheme (SPS) operations is analyzed when critical lines, which are HVDC lines or high voltage AC lines, are tripped. The latest generic model of HVDC system is considered for evaluating the impacts of the SPS operations for introducing HVDC system in the AC grid. The analyses of proposed scenarios are evaluated by electromechanical simulation.

불평형 전압 조건에서 스위칭 소자의 전류 용량과 순환전류를 고려한 HVDC-MMC 제어기법 (Control of HVDC-MMC Considering the Switching Device's Current Capacity and Circulating Current under Unbalanced Voltage Conditions)

  • 문지우;배득우;박정우;강대욱;유동욱;김장목
    • 전력전자학회논문지
    • /
    • 제18권3호
    • /
    • pp.270-278
    • /
    • 2013
  • This paper proposes a control method for high voltage direct current(HVDC) with modular multilevel converter (MMC) under unbalanced voltage conditions considering the submodule(SM)'s current capacity and circulating current. It is aimed to propose a control method in which the current peak value does not exceed the maximum value of HVDC-MMC by considering the current capacity of the SM under unbalance voltage conditions. And it analyzes the effect of the unbalanced voltage on circulating currents in MMC and then proposes a control method considering each component of circulating currents under unbalanced voltages. The effectiveness of the proposed controlling method is verified through simulation results using PSCAD/EMTDC.

HVDC 시스템의 SCR 사이리스터 밸브 시험을 위한 Full-Bridge Converter 방식의 개선된 전류원 회로 (Improved Current Source using Full-Bridge Converter Type for Thyristor Valve Test of HVDC System)

  • 정재헌;조한제;구법진;노의철;정용호;백승택
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.363-368
    • /
    • 2015
  • This paper deals with an improved current source using full-bridge converter type for thyristor valve test of HVDC system. The conventional high-current and low-voltage source of synthetic test circuit requires additional auxiliary power supply to provide the reverse voltage for the auxiliary thyristor valve during turn-off process. The proposed circuit diagram to provide the reverse voltage is extremely simple because no additional component is required. The reverse voltage can be obtained from the input DC voltage of the high-current and low-voltage power supply. The operation principle and design method of the proposed system are described. Simulation and experimental results in scaled down STC of 200 V, 30 A demonstrate the validity of the proposed scheme.

제주계통의 전압조정을 위한 MMC-HVDC 시스템 응용 (Application of MMC-HVDC System for Regulating Grid Voltage Based on Jeju Island Power System)

  • 왓나우덩;김일환;이도헌;김호찬
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.494-502
    • /
    • 2014
  • This paper presents a control method of the modular multilevel converter - high-voltage direct current (MMC-HVDC) system to regulate grid voltage on the basis of the Jeju Island power system. In this case, the MMC-HVDC system is controlled as a static synchronous compensator (Statcom) to exchange the reactive power with the power grid. The operation of the MMC-HVDC system is verified by using the PSCAD/EMTDC simulation program. The Jeju Island power system is first established on the basis of the parameters and measured data from the real Jeju Island power system. This power system consists of two line-commutated converter - high-voltage direct current (LCC-HVDC) systems, two Statcom systems, wind farms, thermal power plants, transformers, and transmission and distribution lines. The proposed control method is then applied by replacing one LCC-HVDC system with a MMC-HVDC system. Simulation results with and without using the MMC-HVDC system are compared to evaluate the effectiveness of the control method.

개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안 (DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method)

  • 허재선;문원식;박상인;김두희;김재철
    • 전기학회논문지
    • /
    • 제64권3호
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

HFCT를 활용한 고전압직류송전 케이블 부분방전 위치추정 (Detection and localization of partial discharge in high-voltage direct current cables using a high-frequency current transformer)

  • 홍선민;손우영;천혜원;강대경;박종후
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.105-108
    • /
    • 2021
  • Detection and localization of partial discharge are considered critical techniques for estimating the lifetimes of power cables. High-frequency current transformers (HFCTs) are commonly used for the detection of partial discharge in high-voltage alternating current (HVAC) power cables; however, their applicability is compromised by the limitations of the installation locations. HFCTs are typically installed in cable terminals or insulation joint boxes because HVACs induce strong time-varying magnetic fields around the cables, saturating the ferromagnetic materials in the HFCTs. Therefore, partial discharges near the installation locations can be detected. In this study, the feasibility of partial discharge detection using a HFCT was investigated for high-voltage direct current (HVDC) cables. We demonstrated that the HFCT could be installed at any location in the HVDC power cable to monitor partial discharge along the entire cable length. Furthermore, we showed that the HFCT could detect the location of partial discharge with high accuracy.

Modeling and Control of IGBT Converter-Based High-Voltage Direct Current System

  • Kim, Hong-Woo;Ko, Suk-Whan;An, Hae-Joon;Jang, Gil-Soo;Ko, Hee-Sang
    • 조명전기설비학회논문지
    • /
    • 제25권7호
    • /
    • pp.97-104
    • /
    • 2011
  • This paper presents modeling and control for the emerging IGBT converter-based high-voltage direct-current system (IGBT-HVDC). This paper adds to the representation of the IGBT-HVDC system in the dq-synchronous reference frame and its decoupled control scheme. Additionally, since the IGBT-HVDC is able to actively support the grid due to its capacity to control independently active and reactive power production, a reactive power control scheme is presented in order to regulate/contribute to the voltage at a remote location by taking into account its operational state and limits. The ability of the control scheme is assessed and discussed by means of simulations using ahybrid power system, which consists of a permanent magnetic synchronous-generator (PMSG) based wind turbine, an IGBT-HVDC, and a local load.

Grid Voltage Regulation with MMC-HVDC System

  • Quach, Ngoc-Thinh;Jeong, Woo-Cheol;Yang, Hang-Jun;Choi, Jong-Yun;Kim, Eel-Hwan
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 전력전자학술대회 논문집
    • /
    • pp.146-147
    • /
    • 2014
  • This paper presents an operation of the modular multilevel converter-high voltage direct current (MMC-HVDC) system as a Statcom to support the grid voltage. The advantage of the MMC-HVDC system is that it can control the active and reactive powers independently. The proposed control scheme will be designed by combining this performance and the control method of the Statcom. The grid voltage is regulated by the control of the reactive power, meanwhile the active power is controlled according to its applications. The simulation results based on the PSCAD/EMTDC simulation program will evaluate the effectiveness of the control scheme.

  • PDF