• 제목/요약/키워드: High velocity oxygen fuel

검색결과 56건 처리시간 0.029초

Tribological Performance of Ni-Cr Composite Coating Sprayed onto AISI 4340 (SNCM439) Steel by High Velocity Oxygen Fuel

  • Umarov, Rakhmatjon;Pyun, Young-Sik;Amanov, Auezhan
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.217-225
    • /
    • 2018
  • In this study, we spray a Ni-Cr composite powder onto AISI 4340 steel using the high velocity oxygen fuel method. We subsequently subject the Ni-Cr coating (as-sprayed) to ultrasonic nanocrystal surface modification (UNSM) process to improve the tribological performance. This study aims at increasing the wear resistance and durability of the Ni-Cr coating by altering the surface integrity and microstructure via the UNSM process. The UNSM process reduces the surface roughness of the as-sprayed coating by about 64%, which is explained by observing the elimination of high peaks and valleys and filling up micro-pores. Furthermore, a change in the microstructure of the coating due to continuous high-frequency strikes to the surface by a tip can lead to an increase in hardness from about 48 to 60 HRC. Furthermore, we investigate the characterization of the friction and wear behavior of Ni-Cr coating by a ball-on-disc tribometer in the dry conditions. We determine that after the UNSM process, there is a significant reduction in the friction coefficient of the as-sprayed coating from approximately 1.1 to 0.75. This is owing to the increased hardness and smoothed surface roughness. In addition, we investigate the surface morphology and wear track of the coatings before and after the UNSM process using a scanning electron microscope, energy dispersive spectrometer, and three-dimensional laser scanning microscope. We observe that the wear track of the Ni-Cr coating after the UNSM process is lower than that of the as-sprayed one. Thus, we confirm that the UNSM process has a significant influence on the improvement of the tribological performance of the Ni-Cr composite coating.

고속 화염 용사를 통하여 형성된 다중벽 탄소 나노튜브 알루미늄 복합소재 코팅의 특성 평가 (Property Evaluation of HVOF Sprayed Multi-walled Carbon Nanotube Aluminum Composite Coatings)

  • 강기철;박형권;이창희
    • 한국표면공학회지
    • /
    • 제45권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Multi-walled carbon nanotube (MWCNT) aluminum composite powders were deposited to form coatings using a high velocity oxygen fuel (HVOF) spraying process. High thermal energy and contact with atmospheric oxygen were supplied as the MWCNT aluminum composite particles were exposed to a gas flow field at high temperature (${\sim}3.0{\times}10^3$ K) during HVOF spraying. As a result, the particles underwent full or partial melting and rapid solidification due to the high thermal energy, and the exposure to oxygen induced the interfacial reaction of MWCNTs within the particle. The electrical and mechanical properties of MWCNT aluminum composite coatings were evaluated based on microstructure analysis. Electrical resistivity, elastic modulus, and micro-hardness, of the MWCNT aluminum composite coatings were higher than those of pure aluminum coating. The contribution of MWCNTs to the aluminum matrix can be attributed to their high electrical conductivity, dispersion hardening and anchoring effects. The relationship among the properties and the interaction of the MWCNTs with the aluminum matrix is discussed.

열처리를 통한 Ni/Fe계 하이브리드 용사 코팅층의 기계적 특성 및 내식성 향상 (Improvement of the Mechanical Property and Corrosion Resistivity of the Ni-/Fe-based Hybrid Coating Layer using High-velocity Oxygen Fuel Spraying by Heat Treatment)

  • 김정준;이연주;김송이;이종재;김재헌;이석재;임현규;이민하;김휘준;최현주
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.240-246
    • /
    • 2022
  • Novel Ni- and Fe-based alloys are developed to impart improved mechanical properties and corrosion resistance. The designed alloys are manufactured as a powder and deposited on a steel substrate using a high-velocity oxygen-fuel process. The coating layer demonstrates good corrosion resistance, and the thus-formed passive film is beneficial because of the Cr contained in the alloy system. Furthermore, during low-temperature heat treatment, factors that deteriorate the properties and which may arise during high-temperature heat treatment, are avoided. For the heattreated coating layers, the hardness increases by up to 32% and the corrosion resistance improves. The influence of the heat treatment is investigated through various methods and is considered to enhance the mechanical properties and corrosion resistance of the coating layer.

고압 분위기에서 CH4/O2 혼합기의 2단 다공체 내 부분산화 개질에 관한 실험적 연구 (Experimental Study on the Partial Oxidation Reforming of CH4/O2 Mixture in Two-Section Porous Media at High Pressure Conditions)

  • 곽영태;이대근;김승곤;고창복;박종호
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.73-74
    • /
    • 2015
  • Synthesis gas such as hydrogen and carbon monoxide was produced from $CH_4/oxygen$ mixture using insulated pressurized porous media combustor. Experimentally, two cylindrical SiC foams with the different pore density were piled up in a quartz tube and fully premixed mixture was supplied in the axial direction. After stabilizing fuel-rich flame at the interface of the two foams at several pressure conditions, mole fractions of synthesis gases were measured by gas chromatography. Heat recirculation through the inner foam structure could extend the flow velocity of stable region over the laminar burning velocity. As the pressure increased, the rich flammability limit, $H_2/CO$ ratio, and module M increased.

  • PDF

최적 고속화염용사법으로 제조된 Diamalloy4006 코팅의 내마모 특성 (Wear Property of Diamalloy-4006 Coating Prepared by OCP HVOF Thermal Spraying)

  • 주윤곤;윤재홍;정연길;이재현
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.442-449
    • /
    • 2015
  • The effects of coating parameters were investigated in wear resistance coatings of Diamalloy-406 on Inconel 718 to obtain an optimum coating condition by high velocity oxy-fuel spraying. The coating parameters, the flow rates of source gases (hydrogen and oxygen), the powder feed rate, and the spray distance, were designed by the Taguchi method. The optimal conditions were determined: oxygen flow rate 34 FRM, hydrogen flow rate 57 FRM, powder feed rate 35 g/min, and spray distance 7 inch. Friction coefficients of the coating and the substrate decreased with an increasing sliding surface temperature from $25^{\circ}C$ to $450^{\circ}C$. The friction coefficient of Diamalloy-4006 coating decreased as the sliding surface temperature increased from $0.43{\pm}0.01$ at $25^{\circ}C$ to $0.29{\pm}0.01$ at $450^{\circ}C$. The wear trace and wear depth of the coating were smaller than the substrate at all temperatures tested. The relationship between spray parameters and wear resistance was discussed extensively, based on the measured roughness, hardness, and porosity in each coating.

Determination of Chromium Content in Carbon Steel Pipe of NPP using ICP-AES

  • Choi, Kwang-Soon;Lee, Chang-Heon;Han, Sun-Ho;Park, Yong-Joon;Song, Kyu-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4270-4274
    • /
    • 2011
  • A method is proposed for determining chromium content in the carbon steel pipes of a nuclear power plant (NPP) to evaluate wall thinning caused by flow-accelerated corrosion (FAC). A flat file was used to obtain filings samples. To assess sampling quality, a disk form of SRM 1227 was ground with the flat file, and the amount of Cr in the filings was determined by ICP-AES. The content of chromium in the filings of SRM 1227 was estimated as six times higher than the certified value due to the contamination of chromium in the file. To eliminate chromium contamination from the file, it was coated with WC-12Co using high-velocity oxygen-fuel (HVOF) spraying systems. After obtaining filings samples using the coated file, Cr content in four types of disk-form SRMs was determined by ICP-AES. The recoveries of Cr in the disk-form SRMs were in the range of 95.4-102.6%, with relative standard deviations from 0.43 to 3.0%. The Cr contents in the filings collected from the used outlet headers of the nuclear power plants using the flat file coated were in the range of 0.11-0.19%.

HVOF 용사 코팅 공정 조건에 따른 코팅층의 기공도 예측 (Porosity Prediction of the Coating Layer Based on Process Conditions of HVOF Thermal Spray Coating)

  • 전준협;서남혁;이종재;손승배;이석재
    • 한국분말재료학회지
    • /
    • 제28권6호
    • /
    • pp.478-482
    • /
    • 2021
  • The effect of the process conditions of high-velocity oxygen fuel (HVOF) thermal spray coating on the porosity of the coating layer is investigated. HVOF coating layers are formed by depositing amorphous FeMoCrBC powder. Oxygen pressure varies from 126 to 146 psi and kerosene pressure from 110 to 130 psi. The Microstructural analysis confirms its porosity. Data analysis is performed using experimental data. The oxygen pressure-kerosene pressure ratio is found to be a key contributor to the porosity. An empirical model is proposed using linear regression analysis. The proposed model is then validated using additional test data. We confirm that the oxygen pressure-kerosene pressure ratio exponentially increases porosity. We present a porosity prediction model relationship for the oxygen pressure-kerosene pressure ratio.

스프레이 코팅 기술 (Spray Coating Technology)

  • 이창희
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

TBC/CoNiCrAlY 용사코팅의 열싸이클 특성 (Thermal cyclic characteristics of TBC/CoNiCrAlY thermal barrier coatings)

  • 김의현;유근봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년도 춘계 학술대회 개요집
    • /
    • pp.45-47
    • /
    • 2006
  • The rotating components in the hot sections of land-based gas turbine are exposed to severe environments during several tens thousand operation hours at above $1100^{\circ}C$ operation temperature. To protect such components from high temperature oxidation, an intermediate bond coat is applied, typical of a MCrAlY-type metal alloy. This study is concerned with the thermal cyclic behavior of thermal barrier coatings. The MCrAlY bond coatings are deposited by HVOF (High Velocity Oxygen Fuel) method on a nickel-based superalloy (GTD-111). Thermal cyclic tests at $1100^{\circ}C$ in ambient air for various periods of time were used to evaluate the thermal cyclic resistance of the TBC coating. The microstructure and morphology of as-sprayed and of thermal cycled coatings were characterized by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD).

  • PDF